7.已知函數(shù)f(x)=2017x+log2017($\sqrt{{x}^{2}+1}$+x)-2017-x,則關(guān)于x的不等式f(2x+3)+f(x)>0的解集是(  )
A.(-3,+∞)B.(-∞,-3)C.(-∞,-1)D.(-1,+∞)

分析 根據(jù)題意,對(duì)于f(x)=2017x+log2017($\sqrt{{x}^{2}+1}$+x)-2017-x,分析其奇偶性與單調(diào)性,可得f(x)為奇函數(shù)且增函數(shù),從而原不等式可以轉(zhuǎn)化為2x+3>-x,解可得x的取值范圍,即可得答案.

解答 解:根據(jù)題意,對(duì)于f(x)=2017x+log2017($\sqrt{{x}^{2}+1}$+x)-2017-x,
其定義域?yàn)镽,關(guān)于原點(diǎn)對(duì)稱,f(-x)=2017-x+log2017($\sqrt{{x}^{2}+1}$-x)-2017x
=-(2017x+log2017($\sqrt{{x}^{2}+1}$+x)-2017-x)=-f(x);
即函數(shù)f(x)為奇函數(shù);
對(duì)于f(x)=2017x+log2017($\sqrt{{x}^{2}+1}$+x)-2017-x,分析易得其為增函數(shù);
f(2x+3)+f(x)>0?f(2x+3)>-f(x)?f(2x+3)>f(-x)?2x+3>-x,
解可得x>-1;
即不等式f(2x+3)+f(x)>0的解集是(-1,+∞),
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性與單調(diào)性的綜合應(yīng)用,關(guān)鍵是分析函數(shù)f(x)的奇偶性與單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=sin(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,如果x1+x2=$\frac{2π}{3}$,則f(x1)+f(x2)=( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.0D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若將函數(shù)y=sin(6x+$\frac{π}{4}$)圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),再將所得圖象沿x軸向右平移$\frac{π}{8}$個(gè)單位長度,則所得圖象的一個(gè)對(duì)稱中心是( 。
A.($\frac{π}{16}$,0)B.($\frac{π}{9}$,0)C.($\frac{π}{4}$,0)D.($\frac{π}{2}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)${({2{x^2}+1})^5}={a_0}+{a_1}{x^2}+{a_2}{x^4}+…+{a_5}{x^{10}},則{a_3}$的值為80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知i為虛數(shù)單位,若復(fù)數(shù)z滿足i3•z=1+i,則|z|=(  )
A.$\sqrt{2}$B.1C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某種商品計(jì)劃提價(jià),現(xiàn)有四種方案,方案(Ⅰ)先提價(jià)m%,再提價(jià)n%;方案(Ⅱ)先提價(jià)n%,再提價(jià)m%;方案(Ⅲ)分兩次提價(jià),每次提價(jià)($\frac{m+n}{2}$)%;方案(Ⅳ)一次性提價(jià)(m+n)%,已知m>n>0,那么四種提價(jià)方案中,提價(jià)最多的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角為60°,且|$\overrightarrow{OA}$|=3,|$\overrightarrow{OB}$|=2,若$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,且$\overrightarrow{OC}$⊥$\overrightarrow{AB}$,則實(shí)數(shù)$\frac{m}{n}$的值為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知一個(gè)正△ABC的邊長為6cm,點(diǎn)D到△ABC各頂點(diǎn)的距離都是4cm.求:
(1)點(diǎn)D到△ABC所在平面的距離;
(2)DB與平面ABC所成角的余弦值;
(3)二面角D-BC-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F在y軸正半軸上,過點(diǎn)F的直線交拋物線于A,B兩點(diǎn),線段AB的長是8,AB的中點(diǎn)到x軸的距離是3.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線m在y軸上的截距為6,且與拋物線交于P,Q兩點(diǎn),連結(jié)QF并延長交拋物線的準(zhǔn)線于點(diǎn)R,當(dāng)直線PR恰與拋物線相切時(shí),求直線m的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案