【題目】下列命題的說(shuō)法錯(cuò)誤的是(
A.命題“若x2﹣3x+2=0,則 x=1”的逆否命題為:“若x≠1,則x2﹣3x+2≠0”.
B.“x=1”是“x2﹣3x+2=0”的充分必要條件.
C.命題p:“?x∈R,sinx+cosx≤ ”是真命題
D.若¬(p∧q)為真命題,則p、q至少有一個(gè)為假命題.

【答案】B
【解析】解:根據(jù)原命題與逆否命題的定義即可知道A正確; 方程x2﹣3x+2=0的根為x=1,或2,
∴x=1能得到x2﹣3x+2=0,而x2﹣3x+2=0得不到x=1,
∴“x=1”是“x2﹣3x+2=0”的充分不必要條件,
即B是錯(cuò)誤的;
x∈R,sinx+cosx= sin(x+ )≤ ”,
故命題p:“x∈R,sinx+cosx≤ ”是真命題,
故C正確;
若¬(p∧q)為真命題,則p∧q是假命題,
則p,q至少1個(gè)是假命題;
故D正確,
故選:B.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用四種命題,掌握原命題:若P則q; 逆命題:若q則p;否命題:若┑P則┑q;逆否命題:若┑q則┑p即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的準(zhǔn)線為,焦點(diǎn)為 為坐標(biāo)原點(diǎn).

(1)求過(guò)點(diǎn),且與相切的圓的方程;

(2)過(guò)的直線交拋物線兩點(diǎn), 關(guān)于軸的對(duì)稱點(diǎn)為,求證:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱臺(tái)中,底面為平行四邊形, 上的點(diǎn).且.

(1)求證: ;

(2)若的中點(diǎn), 為棱上的點(diǎn),且與平面所成角的正弦值為,試求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 , 的夾角為120°,| |=2,| |=3,記| =3 ﹣2 , =2 +k
(1)若 ,求實(shí)數(shù)k的值.
(2)是否存在實(shí)數(shù)k,使得 ?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車入住泉州一周年以來(lái),因其“綠色出行,低碳環(huán)!钡睦砟疃鴤涫苋藗兊南矏,值此周年之際,某機(jī)構(gòu)為了了解共享單車使用者的年齡段,使用頻率、滿意度等三個(gè)方面的信息,在全市范圍內(nèi)發(fā)放份調(diào)查問(wèn)卷,回收到有效問(wèn)卷份,現(xiàn)從中隨機(jī)抽取份,分別對(duì)使用者的年齡段、~歲使用者的使用頻率、~歲使用者的滿意度進(jìn)行匯總,得到如下三個(gè)表格:

(Ⅰ)依據(jù)上述表格完成下列三個(gè)統(tǒng)計(jì)圖形:

(Ⅱ)某城區(qū)現(xiàn)有常住人口萬(wàn),請(qǐng)用樣本估計(jì)總體的思想,試估計(jì)年齡在歲~歲之間,每月使用共享單車在~次的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱中,側(cè)面為矩形, , , 的中點(diǎn), 交于點(diǎn) 側(cè)面.

(1)證明: ;

(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ) 部分圖象如圖所示.
(Ⅰ)求f(x)的最小正周期及解析式;
(Ⅱ)設(shè)g(x)=f(x)﹣cos2x,求函數(shù)g(x)在區(qū)間 上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn , 等比數(shù)列{bn}的公比為q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式
(2)當(dāng)d>1時(shí),記cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中, R), ,且△BCD是以BC為斜邊的直角三角形.求:
(1)λ的值;
(2) 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案