【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為 (φ為參數(shù),0≤φ≤π),曲線C2的參數(shù)方程為 (t為參數(shù)).
(1)求C1的普通方程并指出它的軌跡;
(2)以O為極點,x軸的非負半軸為極軸建立極坐標系,射線OM:θ= 與半圓C的交點為O,P,與直線l的交點為Q,求線段PQ的長.
【答案】
(1)解:曲線C1的參數(shù)方程為 (φ為參數(shù),0≤φ≤π),
消去參數(shù)φ可得普通方程:(x﹣2)2+y2=4.
∵0≤φ≤π,
∴0≤x≤4,0≤y≤2.
∴它表示上半圓,其圖象在x軸的上方及其x軸上的兩點(0,0),(4,0).
(2)解:由半圓C:(x﹣2)2+y2=4,(0≤y≤2)化為極坐標方程:ρ=4cosθ,θ∈ ,
把 代入可得ρ=4 =2 ,
∴|OP|=2 .
曲線C2的參數(shù)方程為 (t為參數(shù)),
消去參數(shù)t化為普通方程:x+y=6,
可得極坐標方程:ρcosθ+ρsinθ=6,
把θ= 代入可得:ρ= =3 =|OQ|.
∴|PQ|=|OQ|﹣|OP|=3 ﹣2 = .
【解析】(1)曲線C1的參數(shù)方程為 (φ為參數(shù),0≤φ≤π),消去參數(shù)φ可得普通方程,注意y的取值范圍.(2)由半圓C:(x﹣2)2+y2=4,(0≤y≤2)化為極坐標方程:ρ=4cosθ,θ∈ ,把 代入可得|OP|.曲線C2的參數(shù)方程為 (t為參數(shù)),消去參數(shù)t化為普通方程,進而得到極坐標方程,把θ= 代入可得:|OQ|.利用|PQ|=|OQ|﹣|OP|即可得出.
科目:高中數(shù)學 來源: 題型:
【題目】已知命題方程表示焦點在軸上的橢圓;命題方程表示的曲線是雙曲線.
(1)若“”為真命題,求實數(shù)的取值范圍;
(2)若“”為假命題、且“”為真命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在半徑為R的圓桌上擺放同樣大小的半徑為r的硬幣.要求硬幣不準露出圓桌面邊緣,并且所擺硬幣彼此不能重疊.當擺放n枚硬幣之后,圓桌上就不能再多擺放一枚這種硬幣了.求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的導函數(shù)為,其中a為常數(shù)
(I)討論f(x)的單調性;
(Ⅱ)當a=-1時,若不等式恒成立,求實數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】水葫蘆原產于巴西,年作為觀賞植物引入中國. 現(xiàn)在南方一些水域水葫蘆已泛濫成災嚴重影響航道安全和水生動物生長. 某科研團隊在某水域放入一定量水葫蘆進行研究,發(fā)現(xiàn)其蔓延速度越來越快,經過個月其覆蓋面積為,經過個月其覆蓋面積為. 現(xiàn)水葫蘆覆蓋面積(單位)與經過時間個月的關系有兩個函數(shù)模型與可供選擇.
(參考數(shù)據(jù): )
(Ⅰ)試判斷哪個函數(shù)模型更合適,并求出該模型的解析式;
(Ⅱ)求原先投放的水葫蘆的面積并求約經過幾個月該水域中水葫蘆面積是當初投放的倍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某糧庫擬建一個儲糧倉如圖所示,其下部是高為2的圓柱,上部是母線長為2的圓錐,現(xiàn)要設計其底面半徑和上部圓錐的高,若設圓錐的高為,儲糧倉的體積為.
(1)求關于的函數(shù)關系式;(圓周率用表示)
(2)求為何值時,儲糧倉的體積最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,過圓O外一點P作圓的切線PC,切點為C,割線PAB、割線PEF分別交圓O于A與B、E與F.已知PB的垂直平分線DE與圓O相切.
(1)求證:DE∥BF;
(2)若 ,DE=1,求PB的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為正方形,四邊形為直角梯形, , .
(1)求與平面所成角的正弦值;
(2)線段或其延長線上是否存在點,使平面平面?證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com