精英家教網 > 高中數學 > 題目詳情
0<a<
1
2
,則下列不等式中總成立的是( 。
分析:不妨令a=
1
3
,逐個分析,可排除B、C、D,從而得到答案.
解答:解:不妨令a=
1
3
,則0=log
1
3
1
log
1
3
(1-
1
3
)
=log
1
3
2
3
log
1
3
1
3
=1,log(1-a)a=log
2
3
1
3
log
2
3
2
3
=1,故A正確;
對于B,(
1
3
)
2
3
=
3
1
9
,(
2
3
)
1
3
=
3
6
9
,顯然前者小于后者,故B錯誤;
對于C,log
1
3
2
3
log
1
3
1
3
=1,故C錯誤;
對于D,(
2
3
)
n
(
1
3
)
n
(n∈N+),故D錯誤.
故選A.
點評:本題考查不等式比較大小,難點在于含參數的對數函數與指數函數的單調性質的綜合分析與應用,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

某學校課題小組為了研究學生的數學成績與物理成績之間的關系,隨機抽取高二年級20名學生某次考試成績(滿分100分)如下表所示:
序號 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
數學成績 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成績 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若單科成績85分以上(含85分),則該科成績?yōu)閮?yōu)秀.
(1)根據上表完成下面的2×2列聯表(單位:人):
數學成績優(yōu)秀 數學成績不優(yōu)秀 合計
物理成績優(yōu)秀
物理成績不優(yōu)秀
合計 20
(2)根據題(1)中表格的數據計算,有多大的把握,認為學生的數學成績與物理成績之間有關系?
(3)若從這20個人中抽出1人來了解有關情況,求抽到的學生數學成績與物理成績至少有一門不優(yōu)秀的概率.
參考數據:
①假設有兩個分類變量X和Y,它們的值域分別為{x1,x2}和{y1,y2},其樣本頻數列聯表(稱為2×2列聯表)為:
y1 y2 合計
x1 a b a+b
x2 c d c+d
合計 a+c b+d a+b+c+d
則隨機變量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d為樣本容量;
②獨立檢驗隨機變量K2的臨界值參考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•東城區(qū)一模)設A是由n個有序實數構成的一個數組,記作:A=(a1,a2,…,ai,…,an).其中ai(i=1,2,…,n)稱為數組A的“元”,S稱為A的下標.如果數組S中的每個“元”都是來自 數組A中不同下標的“元”,則稱A=(a1,a2,…,an)為B=(b1,b2,…bn)的子數組.定義兩個數組A=(a1,a2,…,an),B=(b1,b2,…,bn)的關系數為C(A,B)=a1b1+a2b2+…+anbn
(Ⅰ)若A=(-
1
2
,
1
2
)
,B=(-1,1,2,3),設S是B的含有兩個“元”的子數組,求C(A,S)的最大值;
(Ⅱ)若A=(
3
3
3
3
,
3
3
)
,B=(0,a,b,c),且a2+b2+c2=1,S為B的含有三個“元”的子數組,求C(A,S)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

某學校課題組為了研究學生的數學成績與物理成績之間的關系,隨機抽取高二年級20名學生某次考試成績(滿分100分)如下表所示:
序號 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
數學成績 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成績 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若單科成績85分以上(含85分),則該科成績?yōu)閮?yōu)秀.
(1)根據上表完成下面的2×2列聯表(單位:人):
數學成績優(yōu)秀 數學成績不優(yōu)秀   合   計
物理成績優(yōu)秀
物理成績不優(yōu)秀
合   計 20
(2)根據題(1)中表格的數據計算,有多大的把握,認為學生的數學成績與物理成績之間有關系?
參考數據:
①假設有兩個分類變量X和Y,它們的值域分別為{x1,x2}和y1,y2,其樣本頻數列聯表(稱為2×2列聯表)為:
y1 y2 合計
x1 a b a+b
x2 c d c+d
合計 a+c b+d a+b+c+d
則隨機變量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d為樣本容量;
②獨立檢驗隨機變量K2的臨界值參考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•東城區(qū)一模)設A是由n個有序實數構成的一個數組,記作:A=(a1,a2,…,ai,…,an).其中ai(i=1,2,…,n)稱為數組A的“元”,S稱為A的下標.如果數組S中的每個“元”都是來自 數組A中不同下標的“元”,則稱A=(a1,a2,…,an)為B=(b1,b2,…bn)的子數組.定義兩個數組A=(a1,a2,…,an),B=(b1,b2,…,bn)的關系數為C(A,B)=a1b1+a2b2+…+anbn
(Ⅰ)若A=(-
1
2
,
1
2
)
,B=(-1,1,2,3),設S是B的含有兩個“元”的子數組,求C(A,S)的最大值;
(Ⅱ)若A=(
3
3
,
3
3
3
3
)
,B=(0,a,b,c),且a2+b2+c2=1,S為B的含有三個“元”的子數組,求C(A,S)的最大值;
(Ⅲ)若數組A=(a1,a2,a3)中的“元”滿足a12+a22+a32=1.設數組Bm(m=1,2,3,…,n)含有四個“元”bm1,bm2,bm3,bm4,且bm12+bm22+bm32+bm42=m,求A與Bm的所有含有三個“元”的子數組的關系數C(A,Bm)(m=1,2,3,…,n)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于定義在D上的函數f(x),如果存在常數M和N,使得對于任意x∈D,都有M≤f(x)≤N成立,則稱f(x)是D上的有界函數,其中M稱為函數f(x)的一個下界,N稱為函數f(x)的一個上界.
(1)判斷函數f(x)=log2x-x2在(0,+∞)上是否為有界函數,不必說明理由;
(2)判斷函數f(x)=1+(
1
2
x+(
1
4
x在[0,+∞)上是否為有界函數,請說明理由
(3)若函數f(x)=1+a(
1
2
x+(
1
4
x在[0,+∞)上是有界函數,且3是f(x)的一個上界,-3是f(x)的一個下界,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案