1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的一條漸近線與直線2x+y-3=0垂直,則該雙曲線的離心率是$\frac{\sqrt{5}}{2}$.

分析 根據(jù)題意,由雙曲線的方程計算可得其漸近線方程為y=±$\frac{x}{a}$,進而由直線垂直的性質分析可得有$\frac{1}{a}$=$\frac{1}{2}$,解可得a的值,由雙曲線的幾何性質可得c的值,進而有雙曲線的離心率公式計算可得答案.

解答 解:根據(jù)題意,雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-y2=1,則其漸近線方程為y=±$\frac{x}{a}$,
又由雙曲線的一條漸近線與直線2x+y-3=0即y=-2x+3垂直,
則有$\frac{1}{a}$=$\frac{1}{2}$,
即a=2,
又由b=1,則c=$\sqrt{4+1}$=$\sqrt{5}$,
則雙曲線的離心率e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$;
故答案為:$\frac{\sqrt{5}}{2}$.

點評 本題考查雙曲線的幾何性質,關鍵掌握雙曲線的漸近線方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.已知直線x+ay-1=0與圓C:(x+a)2+(y-1)2=1相交于A、B兩點,且△ABC為等腰直角三角形,則實數(shù)a=$±\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥DC,BC=4,AD=DC=2,E為PA的中點,F(xiàn)為線段BC上一點,且CF=1.
(Ⅰ)證明:EF∥平面PCD;
(Ⅱ)證明:平面PAB⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知集合A={x|(x-1)(x-4)≤0},$B=\{x|\frac{x-5}{x-2}≤0\}$,則A∩B=(  )
A.{x|1≤x≤2}B.{x|1≤x<2}C.{x|2≤x≤4}D.{x|2<x≤4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設G是△ABC的重心,點E是AG的中點,若$\overrightarrow{BA}$•$\overrightarrow{CA}$=4,$\overrightarrow{BG}$•$\overrightarrow{CG}$=-1,則$\overrightarrow{BE}$•$\overrightarrow{CE}$的值是( 。
A.-$\frac{7}{8}$B.$\frac{5}{8}$C.$\frac{7}{8}$D.$\frac{13}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.過拋物線C:y2=8x的焦點F作直線與C交于A、B兩點,線段AB的垂直平分線交x軸于點P,則|$\frac{AB}{PF}$|=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,矩形FCEB是圓柱OO1的軸截面,且FC=1,F(xiàn)B=2,點A、D分別在上下底面圓周上,且在面FCEB的同側,△OAB是等邊三角形,∠ECD=60°,M、N分別是OC、AE的中點.
(1)求證:MN∥面CDE;
(2)求二面角C-AD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.2016年濟南地鐵正式開工建設,地鐵時代的到來能否緩解濟南的交通擁堵狀況呢?某社團進行社會調查,得到的數(shù)據(jù)如表:
男性市民女性市民
認為能緩解交通擁堵4830
認為不能緩解交通擁堵1220
則下列結論正確的是( 。
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
P(x2≥k)0.050.0100.0050.001
k3.8416.6357.87910.828
A.有95%的把握認為“對能否緩解交通擁堵的認識與性別有關”
B.有95%的把握認為“對能否緩解交通擁堵的認識與性別無關”
C.有99%的把握認為“對能否緩解交通擁堵的認識與性別有關”
D.有99%的把握認為“對能否緩解交通擁堵的認識與性別無關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.拋物線C:x2=2py(p>0)的焦點為F,l為C的準線,P∈C.且|PF|=6,過P作l的垂線,垂足為M,若△FMP為正三角形,則p=( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習冊答案