12.復數(shù)$z=\frac{2-i}{1+i}$所對應的點在復平面內(nèi)位于第四象限.

分析 利用復數(shù)的運算法則、幾何意義即可得出.

解答 解:復數(shù)$z=\frac{2-i}{1+i}$=$\frac{(2-i)(1-i)}{(1+i)(1-i)}$=$\frac{1}{2}$-$\frac{3}{2}$i所對應的點$(\frac{1}{2},-\frac{3}{2})$在復平面內(nèi)位于第四象限.
故答案為:四.

點評 本題考查了復數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知直線l的參數(shù)方程為 $\left\{\begin{array}{l}{x=1+t}\\{y=3-2t}\end{array}\right.$(t是參數(shù)),以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程是ρ=4sinθ.
(1)求圓C的直角坐標方程;
(2)已知點P的直角坐標為(2,1)直線l與圓C交于A,B兩點,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知數(shù)列{an}的前n項和為Sn,且a1=2,3Sn=an(n+2),n∈N*
(Ⅰ)求a2,a3并猜想an的表達式;
(Ⅱ)用數(shù)學歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知a,b,c,m,n,p都是實數(shù),且a2+b2+c2=1,m2+n2+p2=1.
(Ⅰ)證明|am+bn+cp|≤1;
(Ⅱ)若abc≠0,證明$\frac{{m}^{4}}{{a}^{2}}$+$\frac{{n}^{4}}{^{2}}$+$\frac{{p}^{4}}{{c}^{2}}$≥1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.對于函數(shù)f(x)=x2+$\frac{a}{x}$,下列結(jié)論正確的是( 。
A.?a∈R,函數(shù)f(x)是奇函數(shù)B.?a∈R,函數(shù)f(x)是偶函數(shù)
C.?a>0,函數(shù)f(x)在(-∞,0)上是減函數(shù)D.?a>0,函數(shù)f(x)在(0,+∞)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在△ABC中,三邊長分別為a=2,b=3,c=4,則$\frac{sin2A}{sinB}$=$\frac{7}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知點M(a,b)與點N(0,-1)在直線3x-4y+5=0的兩側(cè),給出以下結(jié)論:
①3a-4b+5>0;
②當a>0時,a+b有最小值,無最大值;
③a2+b2>1;
④當a>0且a≠1時,$\frac{b+1}{a-1}$的取值范圍是(-∞,-$\frac{9}{4}$)∪($\frac{3}{4}$,+∞).
正確的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設i為虛數(shù)單位,復數(shù)$z=\frac{1-2i}{2+i}$,則|z|=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.為了檢驗訓練情況,武警某支隊于近期舉辦了一場展示活動,其中男隊員12人,女隊員18人,測試結(jié)果如莖葉圖所示(單位:分).若成績不低于175分者授予“優(yōu)秀警員”稱號,其他隊員則給予“優(yōu)秀陪練員”稱號.
(1)若用分層抽樣的方法從“優(yōu)秀警員”和“優(yōu)秀陪練員”中共提取10人,然后再從這10人中選4人,那么至少有1人是“優(yōu)秀警員”的概率是多少?
(2)若所有“優(yōu)秀警員”中選3名代表,用ξ表示所選女“優(yōu)秀警員”的人數(shù),試求ξ的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案