8.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與直線l:x-y+2=0平行,則雙曲線C的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{2}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{10}$

分析 根據(jù)題意,由雙曲線的方程可得其漸近線方程為y=±$\frac{a}$x,結合題意可得有$\frac{a}$=1,即b=a,計算可得c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{2}$a,由雙曲線離心率公式計算可得答案.

解答 解:根據(jù)題意,雙曲線C的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,
則其漸近線方程為y=±$\frac{a}$x,
又由其一條漸近線與直線l:x-y+2=0平行,有$\frac{a}$=1,即b=a,
則c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{2}$a,
則其離心率e=$\frac{c}{a}$=$\sqrt{2}$,
故選:B.

點評 本題考查雙曲線的幾何性質,關鍵是掌握雙曲線的漸近線方程的形式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

18.連擲兩次骰子得到的點數(shù)分別為m和n,記向量$\overrightarrow a=(m,n)$與向量$\overrightarrow b=(1,-1)$的夾角為θ,則θ為銳角的概率是$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點P是線段BD1上的動點.當△PAC在平面DC1,BC1,AC上的正投影都為三角形時,將它們的面積分別記為S1,S2,S3
(i) 當BP=$\frac{{\sqrt{3}}}{3}$時,S1=S2(填“>”或“=”或“<”);
(ii) S1+S2+S3的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)$f(x)=\left\{\begin{array}{l}-{(x-1)^2}+2,\;\;\;x≤1\\ \frac{1}{x}+1,\;\;x>1\;.\;\;\end{array}\right.$下列四個命題:
①f(f(1))>f(3);
②?x0∈(1,+∞),$f'({x_0})=-\frac{1}{3}$;
③f(x)的極大值點為x=1;
④?x1,x2∈(0,+∞),|f(x1)-f(x2)|≤1
其中正確的有①②③④.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在△ABC中,a、b、c分別是角A、B、C的對邊,△ABC的面積為S,(a2+b2)tanC=8S,則$\frac{si{n}^{2}A+si{n}^{2}B}{si{n}^{2}C}$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知曲線C的方程為$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{(x+1)^{2}+{y}^{2}}$=4,則曲線C的離心率$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知$a=\int_0^π{2sin\frac{x}{2}}cos\frac{x}{2}dx$,則a=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx-a(a∈R)與函數(shù)$F(x)=x+\frac{2}{x}$有公共切線.
(Ⅰ)求a的取值范圍;
(Ⅱ)若不等式xf(x)+e>2-a對于x>0的一切值恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.現(xiàn)將5張連號的電影票分給甲、乙等5個人,每人一張,且甲、乙分得的電影票連號,則共有不同分法的種數(shù)為( 。
A.12B.24C.36D.48

查看答案和解析>>

同步練習冊答案