17.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{cos2πx,x≤0}\end{array}\right.$,則f($\frac{1}{2}$)+f(-$\frac{1}{2}$)的值等于( 。
A.0B.±2C.2D.-2

分析 根據(jù)函數(shù)的解析式分別求出f($\frac{1}{2}$)和f(-$\frac{1}{2}$)的值,求和即可.

解答 解:∵f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{cos2πx,x≤0}\end{array}\right.$,
∴f($\frac{1}{2}$)=log2$\frac{1}{2}$=-1,
f(-$\frac{1}{2}$)=cos[2π•(-$\frac{1}{2}$)]=cos(-π)=-1,
故f($\frac{1}{2}$)+f(-$\frac{1}{2}$)=-2,
故選:D.

點(diǎn)評 本題考查了函數(shù)求值問題,考查三角函數(shù)以及對數(shù)函數(shù)的運(yùn)算,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知i是虛數(shù)單位,若$\frac{3i}{z}$=-1+2i,則z的共軛復(fù)數(shù)$\overline{z}$等于( 。
A.$\frac{2}{3}$+$\frac{1}{3}$iB.$\frac{2}{3}$-$\frac{1}{3}$iC.$\frac{6}{5}$+$\frac{3}{5}$iD.$\frac{6}{5}$-$\frac{3}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.寫出命題:“若方程ax2-bx+c=0的兩根均大于0,則ac>0”的一個等價(jià)命題是若ac≤0,則方程a2-bx+c=0的兩根不全大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.4π+4B.2π+4C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知圓柱的底面半徑為2,母線長與底面的直徑相等,則該圓柱的表面積為24π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x∈R||x-1|<1},B={y∈R|y=2x+1,x∈R},則A∩(∁RB)=( 。
A.(0,2)B.[1,2)C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=-x3+ax2-x-1在R上是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.$({-∞,-\sqrt{3}}]∪[{\sqrt{3},+∞})$B.$({-∞,-\sqrt{3}})∪({\sqrt{3},+∞})$C.$[{-\sqrt{3},\sqrt{3}}]$D.$({-\sqrt{3},\sqrt{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,已知$a=\frac{{5\sqrt{3}}}{3},b=5\;,A={30°}$,則 B=600或1200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若a,b,c成等比數(shù)列,則角B的最大值為$\frac{π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案