【題目】以數(shù)列的任意相鄰兩項(xiàng)為坐標(biāo)的點(diǎn),均在一次函數(shù)y=2x+k的圖象上,數(shù)列滿足,且.

1)求證數(shù)列為等比數(shù)列,并求出數(shù)列的公比;

2)設(shè)數(shù)列,的前n項(xiàng)和分別為Sn,Tn,若S6=T4,S5=9,求k的值.

【答案】1)證明見解析,2;(28.

【解析】

(1)將點(diǎn)代入直線方程即可得到的遞推公式,再根據(jù)即可得到的關(guān)系,即可證明為等比數(shù)列并求解通項(xiàng)公式;

(2)先根據(jù)條件求解出的表達(dá)式,再根據(jù)已知條件即可計(jì)算出的值.

1)證明:根據(jù)題目條件,可知an+1=2an+k

整理可得an+1+k=2an+k);

bn=an+1an=an+k

∴有bn+1=2bn,即數(shù)列{bn}是首項(xiàng)為a1+k,公比為2的等比數(shù)列.

2)解:數(shù)列{bn}的前n項(xiàng)和

∴數(shù)列{an}的前n項(xiàng)和;

S6=T4,S5=9

∴可列方程組,解得;

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖.四棱柱的底面是直角梯形,,,四邊形均為正方形.

1)證明;平面平面ABCD;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分13分如圖,在直角坐標(biāo)系,的頂點(diǎn)是原點(diǎn),始邊與軸正半軸重合終邊交單位圓于點(diǎn),將角的終邊按逆時(shí)針方向旋轉(zhuǎn),交單位圓于點(diǎn)

1,;

2分別過軸的垂線垂足依次為,的面積為的面積為,求角的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cx22pyp0),直線l1ykx+t與拋物線C交于A,B兩點(diǎn)(A點(diǎn)在B點(diǎn)右側(cè)),直線l2ykx+mmt)交拋物線CM,N兩點(diǎn)(M點(diǎn)在N點(diǎn)右側(cè)),直線AM與直線BN交于點(diǎn)E,交點(diǎn)E的橫坐標(biāo)為2k,則拋物線C的方程為(

A.x2yB.x22yC.x23yD.x24y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在以O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρ4cosθ,直線C2的參數(shù)方程為t為參數(shù)).

1)求曲線C1的直角坐標(biāo)方程和直線C2的普通方程;

2)若P1,0),直線C2與曲線C1相交于AB兩點(diǎn),求|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間內(nèi)存在零點(diǎn).

1)求的范圍;

2)設(shè),的兩個(gè)零點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)國家號(hào)召,打贏脫貧致富攻堅(jiān)戰(zhàn),武漢大學(xué)團(tuán)隊(duì)帶領(lǐng)湖北省大悟縣新城鎮(zhèn)熊灣村村民建立有機(jī)、健康、高端、綠色的蔬菜基地,并策劃生產(chǎn)、運(yùn)輸、銷售一體化的直銷供應(yīng)模式,據(jù)統(tǒng)計(jì),當(dāng)?shù)卮迕駜赡陼r(shí)間成功脫貧.蔬菜種植基地將采摘的有機(jī)蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價(jià)格銷售到生鮮超市,每份15元的價(jià)格賣給顧客,如果當(dāng)天前8小時(shí)賣不完,則超市通過促銷以每份5元的價(jià)格賣給顧客(根據(jù)經(jīng)驗(yàn),當(dāng)天能夠把剩余的有機(jī)蔬菜都低價(jià)處理完畢,且處理完畢后,當(dāng)天不再進(jìn)貨).該生鮮超市統(tǒng)計(jì)了100天有機(jī)蔬菜在每天的前8小時(shí)內(nèi)的銷售量(單位:份),制成如下表格(注:,且.若以100天記錄的頻率作為每日前8小時(shí)銷售量發(fā)生的概率,該生鮮超市當(dāng)天銷售有機(jī)蔬菜利潤的期望值為決策依據(jù),若購進(jìn)17份比購進(jìn)18份的利潤的期望值大,則x的最小值是________.

8小時(shí)內(nèi)銷售量

15

16

17

18

19

20

21

頻數(shù)

10

x

16

16

15

13

y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左右焦點(diǎn)分別為,橢圓右頂點(diǎn)為,點(diǎn)在圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)點(diǎn)在橢圓上,且位于第四象限,點(diǎn)在圓上,且位于第一象限,已知,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線是雙曲線的一條漸近線,點(diǎn)都在雙曲線上,直線軸相交于點(diǎn),設(shè)坐標(biāo)原點(diǎn)為.

1)求雙曲線的方程,并求出點(diǎn)的坐標(biāo)(用表示);

2)設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線軸相交于點(diǎn).問:在軸上是否存在定點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

3)若過點(diǎn)的直線與雙曲線交于兩點(diǎn),且,試求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案