15.設(shè)C是拋物線Γ:y=2x2上一點(diǎn),以C為圓心且與Γ的準(zhǔn)線相切的圓必過一個(gè)定點(diǎn)P,則點(diǎn)P的坐標(biāo)是(0,$\frac{1}{8}$).

分析 求出拋物線的焦點(diǎn)坐標(biāo),利用拋物線的定義推出結(jié)果即可.

解答 解:y=2x2,化為x2=$\frac{1}{2}$y,焦點(diǎn)坐標(biāo)(0,$\frac{1}{8}$),
由拋物線的定義可知:以C為圓心且與Γ的準(zhǔn)線相切的圓必過拋物線的焦點(diǎn)坐標(biāo),
所以則點(diǎn)P的坐標(biāo)是(0,$\frac{1}{8}$).
故答案為:(0,$\frac{1}{8}$).

點(diǎn)評 本題考查拋物線的簡單性質(zhì)的應(yīng)用,拋物線定義的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列求導(dǎo)運(yùn)算錯(cuò)誤的是(  )
A.(x2+4)′=2x+4B.${({{{log}_2}x})^′}=\frac{1}{xln2}$C.(cosx)′=-sinxD.${({\frac{1}{x}})^′}=-\frac{1}{x^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點(diǎn)分別是F1和F2,點(diǎn)A、B分別是橢圓的上、下頂點(diǎn),四邊形AF1BF2是正方形.
(1)求橢圓C的離心率;
(2)點(diǎn)$(\sqrt{2},\sqrt{3})$是橢圓C上一點(diǎn).
①求橢圓C的方程;
②若動(dòng)點(diǎn)P在直線y=-a2上(不在y軸上),直線PB與橢圓交于另一個(gè)點(diǎn)M.
證明:直線AM和直線AP的斜率之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若方程x2+x+p=0有兩個(gè)虛根α、β,且|α-β|=3,則實(shí)數(shù)p的值是-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如果函數(shù)$f(x)={log_3}\frac{3+x}{a-x}$是奇函數(shù),則f(x)的定義域是(-3,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A、B、C所對的邊分別為a、b、c.
(1)若a、b、c成等比數(shù)列,且$cosB=\frac{3}{5}$,求cotA+cotC的值;
(2)若A、B、C成等差數(shù)列,且b=2,求△ABC 的周長l的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知等差數(shù)列{an}中,前n項(xiàng)和為Sn,若a2+a8=10,則S9=( 。
A.36B.40C.42D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.過點(diǎn)A(4,a)和B(5,b)的直線與y=x+m平行,則|AB|的值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若不等式組$\left\{\begin{array}{l}x≥0\\ y≥2x\\ kx-y+1≥0\end{array}\right.$表示的平面區(qū)域是一個(gè)直角三角形,則該直角三角形的面積是( 。
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{1}{5}$或$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊答案