【題目】若 {an}是等比數(shù)列,a4a7=﹣512,a3+a8=124,且公比q為整數(shù),則a10=(
A.256
B.﹣256
C.512
D.﹣512

【答案】C
【解析】解:{an}是等比數(shù)列, ∵a4a7=﹣512,a3+a8=124,
∴a3a8=﹣512,a3+a8=124,
∴a3和a8是方程x2﹣124x﹣512=0的兩個實數(shù)根,
解方程x2﹣124x﹣512=0,
得x1=128,x2=﹣4,
∵公比q為整數(shù),
∴a3=﹣4,a8=128,
﹣4q5=128,解得q=﹣2,
∴a10=a8(﹣2)2=128×4=512.
故選C.
【考點精析】根據(jù)題目的已知條件,利用等比數(shù)列的通項公式(及其變式)的相關(guān)知識可以得到問題的答案,需要掌握通項公式:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2﹣3x,則函數(shù)g(x)=f(x)﹣x+3的零點的集合為(
A.{1,3}
B.{﹣3,﹣1,1,3}
C.{2﹣ ,1,3}
D.{﹣2﹣ ,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列四個說法:
①若函數(shù)f(x)=asinx+cosx(x∈R)的圖象關(guān)于直線x= 對稱,則a= ;
②已知向量 =(1,2), =(﹣2,m),若 的夾角為鈍角,則m<1;
③當(dāng) <α< 時,函數(shù)f(x)=sinx﹣logax有三個零點;
④函數(shù)f(x)=xsinx在[﹣ ,0]上單調(diào)遞減,在[0, ]上單調(diào)遞增.
其中正確的是(填上所有正確說法的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中, ).

(Ⅰ)當(dāng)時,若對任意恒成立,求實數(shù)的取值范圍;

(Ⅱ)設(shè)函數(shù)的圖象在兩點處的切線分別為、,若 ,且,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將一枚質(zhì)地均勻的骰子先后拋擲兩次,若第一次朝上一面的點數(shù)為a,第二次朝上一面的點數(shù)為b,則函數(shù)y=ax2﹣2bx+1在(﹣∞,2]上為減函數(shù)的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線y=x+b與曲線x= 恰有一個公共點,則b的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了培養(yǎng)學(xué)生的安全意識,某中學(xué)舉行了一次安全自救的知識競賽活動,共有800 名學(xué)生參加了這次競賽.為了解本次競賽的成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100 分)進(jìn)行統(tǒng)計,得到如下的頻率分布表,請你根據(jù)頻率分布表解答下列問題:

序號
(i)

分組
(分?jǐn)?shù))

組中值
(Gi)

頻數(shù)
(人數(shù))

頻率
(Fi)

1

[60,70)

65

0.10

2

[70,80)

75

20

3

[80,90)

85

0.20

4

[90,100)

95

合計

50

1


(1)求出頻率分布表中①、②、③、④、⑤的值;
(2)為鼓勵更多的學(xué)生了解“安全自救”知識,成績不低于85分的學(xué)生能獲獎,請估計在參加的800名學(xué)生中大約有多少名學(xué)生獲獎?
(3)在上述統(tǒng)計數(shù)據(jù)的分析中,有一項指標(biāo)計算的程序框圖如圖所示,則該程序的功能是什么?求輸出的S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】12分)

如圖,四棱錐P-ABCD中,側(cè)面PAD為等比三角形且垂直于底面ABCD, EPD的中點.

1)證明:直線 平面PAB

2)點M在棱PC 上,且直線BM與底面ABCD所成銳角為 ,求二面角M-AB-D的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (其中a為非零實數(shù)),且方程 有且僅有一個實數(shù)根. (Ⅰ)求實數(shù)a的值;
(Ⅱ)證明:函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞減.

查看答案和解析>>

同步練習(xí)冊答案