分析 (Ⅰ)由f(x)定義域是(0,+∞),${f}^{'}(x)=2x-\frac{8}{x}=\frac{2{x}^{2}-8}{x}$,令f′(x)=0,得x=1或x=-2(舍),列表討論,能求出f(x)的單調(diào)區(qū)間和極值.
(Ⅱ)f(x)的最小值為f($\sqrt{k}$)=k-klnk,若函數(shù)有零點,則有f($\sqrt{k}$)≤0,解得k≥e,此時函數(shù)f(x)在(1,$\sqrt{e}$]上有一個零點,當(dāng)k<e時,函數(shù)f(x)在(1,$\sqrt{e}$]上沒有零點.
解答 解:(Ⅰ)∵f(x)=x2-2klnx(k>0),
∴f(x)定義域是(0,+∞),${f}^{'}(x)=2x-\frac{8}{x}=\frac{2{x}^{2}-8}{x}$,
令f′(x)=0,得x=1或x=-2(舍),列表如下:
x | (0,2) | 2 | (2,+∞) |
f′(x) | - | 0 | + |
f(x) | ↓ | 極小值 | ↑ |
點評 本題考查函數(shù)的單調(diào)區(qū)間和極值的求法,考查函數(shù)在閉區(qū)間上的零點個數(shù)的討論,是中檔題,解題時要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-\frac{3}{2},3)$ | B. | $[-\frac{3}{2},3]$ | C. | $[-\frac{3}{2},\frac{3}{2}]$ | D. | [-3,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 數(shù)列{an}是單調(diào)遞增數(shù)列,數(shù)列{bn}是單調(diào)遞減數(shù)列 | |
B. | 數(shù)列{an+bn}是等比數(shù)列 | |
C. | 數(shù)列$\{\frac{a_n}{b_n}\}$有最小值,無最大值 | |
D. | 若△ABC中,C=90°,CA=CB,則$|\overrightarrow{{B_n}{A_n}}|$最小時,${a_n}+{b_n}=\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p真,q真 | B. | p假,q真 | C. | p真,q假 | D. | p假,q假 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 80 | B. | 40 | C. | 32 | D. | 16 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com