6.在△ABC中,A1,B1分別是邊BA,CB的中點(diǎn),A2,B2分別是線段A1A,B1B的中點(diǎn),…,An,Bn分別是線段${A_{n-1}}A,{B_{n-1}}B(n∈{N^*},n>1)$的中點(diǎn),設(shè)數(shù)列{an},{bn}滿足:向量$\overrightarrow{{B_n}{A_n}}={a_n}\overrightarrow{CA}+{b_n}\overrightarrow{CB}(n∈{N^*})$,有下列四個(gè)命題,其中假命題是( 。
A.數(shù)列{an}是單調(diào)遞增數(shù)列,數(shù)列{bn}是單調(diào)遞減數(shù)列
B.數(shù)列{an+bn}是等比數(shù)列
C.數(shù)列$\{\frac{a_n}{b_n}\}$有最小值,無(wú)最大值
D.若△ABC中,C=90°,CA=CB,則$|\overrightarrow{{B_n}{A_n}}|$最小時(shí),${a_n}+{b_n}=\frac{1}{2}$

分析 由題意可得$\overrightarrow{B{A}_{n}}$=(1-$\frac{1}{{2}^{n}}$)$\overrightarrow{BA}$=(1-$\frac{1}{{2}^{n}}$)($\overrightarrow{CA}$-$\overrightarrow{CB}$),$\overrightarrow{{B}_{n}B}$=$\frac{1}{{2}^{n}}$$\overrightarrow{CB}$,可得$\overrightarrow{{B}_{n}{A}_{n}}$=$\overrightarrow{{B}_{n}B}$+$\overrightarrow{B{A}_{n}}$,由條件可得an=1-$\frac{1}{{2}^{n}}$,bn=$\frac{1}{{2}^{n-1}}$-1,由單調(diào)性可判斷A;由等比數(shù)列的定義可判斷B;由數(shù)列的單調(diào)性即可判斷C;運(yùn)用向量數(shù)量積的性質(zhì),化簡(jiǎn)結(jié)合二次函數(shù)的最值,即可判斷D.

解答 解:由在△ABC中,A1,B1分別是邊BA,CB的中點(diǎn),
A2,B2分別是線段A1A,B1B的中點(diǎn),…,
An,Bn分別是線段${A_{n-1}}A,{B_{n-1}}B(n∈{N^*},n>1)$的中點(diǎn),
可得$\overrightarrow{B{A}_{1}}$=(1-$\frac{1}{2}$)$\overrightarrow{BA}$,$\overrightarrow{B{A}_{2}}$=(1-$\frac{1}{4}$)$\overrightarrow{BA}$,…,
即有$\overrightarrow{B{A}_{n}}$=(1-$\frac{1}{{2}^{n}}$)$\overrightarrow{BA}$=(1-$\frac{1}{{2}^{n}}$)($\overrightarrow{CA}$-$\overrightarrow{CB}$),
$\overrightarrow{{B}_{1}B}$=$\frac{1}{2}$$\overrightarrow{CB}$,$\overrightarrow{{B}_{2}B}$=$\frac{1}{4}$$\overrightarrow{CB}$,…,
即有$\overrightarrow{{B}_{n}B}$=$\frac{1}{{2}^{n}}$$\overrightarrow{CB}$,
則$\overrightarrow{{B}_{n}{A}_{n}}$=$\overrightarrow{{B}_{n}B}$+$\overrightarrow{B{A}_{n}}$=(1-$\frac{1}{{2}^{n}}$)($\overrightarrow{CA}$-$\overrightarrow{CB}$)+$\frac{1}{{2}^{n}}$$\overrightarrow{CB}$═(1-$\frac{1}{{2}^{n}}$)$\overrightarrow{CA}$+($\frac{2}{{2}^{n}}$-1)$\overrightarrow{CB}$
=an$\overrightarrow{CA}$+bn$\overrightarrow{CB}$,
可得an=1-$\frac{1}{{2}^{n}}$,bn=$\frac{1}{{2}^{n-1}}$-1,
則數(shù)列{an}是單調(diào)遞增數(shù)列,數(shù)列{bn}是單調(diào)遞減數(shù)列,故A正確;
數(shù)列{an+bn}即為{$\frac{1}{{2}^{n}}$}是首項(xiàng)和公比均為$\frac{1}{2}$的等比數(shù)列,故B正確;
而當(dāng)n=1時(shí),a1=$\frac{1}{2}$,b1=0,$\frac{{a}_{n}}{_{n}}$不存在;
n>1時(shí),$\frac{{a}_{n}}{_{n}}$=$\frac{{2}^{n}-1}{2-{2}^{n}}$=-1+$\frac{1}{2-{2}^{n}}$在n∈N+遞增,有最小值,無(wú)最大值,故C錯(cuò)誤;
若△ABC中,C=90°,CA=CB,則$|\overrightarrow{{B_n}{A_n}}|$2=(an2+bn2)$\overrightarrow{CA}$2+2anbn$\overrightarrow{CA}$•$\overrightarrow{CB}$
=(an2+bn2)$\overrightarrow{CA}$2,an2+bn2=(1-$\frac{1}{{2}^{n}}$)2+($\frac{1}{{2}^{n-1}}$-1)2=5•($\frac{1}{2}$)2n-6•($\frac{1}{2}$)n+2
=5($\frac{1}{{2}^{n}}$-$\frac{3}{5}$)2-$\frac{1}{5}$,當(dāng)n=1時(shí),取得最小值,即有則$|\overrightarrow{{B_n}{A_n}}|$最小時(shí),${a_n}+{b_n}=\frac{1}{2}$.故D正確.
故選:C.

點(diǎn)評(píng) 本題考查數(shù)列與向量的綜合問(wèn)題的解法,注意運(yùn)用向量的加減和數(shù)乘運(yùn)算,考查數(shù)列的單調(diào)性和最值,以及轉(zhuǎn)化思想和化簡(jiǎn)運(yùn)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知$\vec a$與$\vec b$的夾角為$\frac{2π}{3}$,且$|\vec a|=2$,$|\vec b|=5$,則$(2\vec a-\vec b)•\vec a$=13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在某校,一學(xué)科的學(xué)習(xí)由必修、選修兩門(mén)課程組成,對(duì)某層次學(xué)生調(diào)查統(tǒng)計(jì)知,有且僅有一門(mén)課程獲得學(xué)分概率為$\frac{5}{12}$,至少一門(mén)課程獲得學(xué)分的概率為$\frac{11}{12}$.規(guī)定兩門(mén)課程都獲得學(xué)分該學(xué)科才能結(jié)業(yè).已知必修課程獲得學(xué)分的概率大于選修課程獲得學(xué)分的概率且互不影響.
(1)對(duì)該層內(nèi)的A同學(xué),該學(xué)科能結(jié)業(yè)的概率是多少?
(2)在該層次的同學(xué)中隨機(jī)抽取5名,記X為其中能結(jié)業(yè)的學(xué)生數(shù),求X的期望EX與方差DX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若不等式3x2+y2≥mx(x+y)對(duì)于?x,y∈R恒成立,則實(shí)數(shù)m的取值范圍是[-6,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某化肥廠生產(chǎn)甲、乙兩種混合肥料,需要A、B兩種主要原料,生產(chǎn)1噸甲種肥料和生產(chǎn)1噸乙種肥料所需兩種原料的噸數(shù)如下表所示:
原料
肥料
AB
31
22
每日可用A種原料12噸,B種原料8噸,已知生產(chǎn)1噸甲種肥料可獲利潤(rùn)3萬(wàn)元;生產(chǎn)1噸乙種肥料可獲利潤(rùn)4萬(wàn)元,分別用x,y表示計(jì)劃生產(chǎn)甲、乙兩種肥料的噸數(shù).
(1)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫(huà)出相應(yīng)的平面區(qū)域;
(2)問(wèn)每日分別生產(chǎn)甲、乙兩種肥料各多少?lài),能夠產(chǎn)生最大利潤(rùn)?并求出此最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=x2-2klnx(k>0).
(Ⅰ)當(dāng)k=4時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)試討論函數(shù)f(x)在區(qū)間(1,$\sqrt{e}$]上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)f(x)=ex,f(x)=g(x)-h(x),且g(x)為偶函數(shù),h(x)為奇函數(shù),若存在實(shí)數(shù)m,當(dāng)x∈[-1,1]時(shí),不等式mg(x)+h(x)≥0成立,則m的最小值為( 。
A.$\frac{{e}^{2}-1}{{e}^{2}+1}$B.$\frac{2}{{e}^{2}+1}$C.$\frac{{e}^{2}+1}{{e}^{2}-1}$D.$\frac{1-{e}^{2}}{1+{e}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)左、右焦點(diǎn)分別為F1,F(xiàn)2,A(2,0)是橢圓的右頂點(diǎn),過(guò)F2且垂直于x軸的直線交橢圓于P,Q兩點(diǎn),且|PQ|=3;
(1)求橢圓的方程;
(2)若直線l與橢圓交于兩點(diǎn)M,N(M,N不同于點(diǎn)A),若$\overrightarrow{AM}$•$\overrightarrow{AN}$=0,$\overrightarrow{MT}$=$\overrightarrow{TN}$;
①求證:直線l過(guò)定點(diǎn);并求出定點(diǎn)坐標(biāo);
②求直線AT的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知數(shù)列{an}中,a1=a2=1,且an+2-an=1,則數(shù)列{an}的前100項(xiàng)和為2550.

查看答案和解析>>

同步練習(xí)冊(cè)答案