【題目】如圖,四棱錐,底面的菱形,側面是邊長為的正三角形,O是AD的中點, 的中點

1求證:

2若PO與底面ABCD垂直,求直線與平面所成的角的正弦值

【答案】1詳見解析2

【解析】

試題分析:I取AD中點 O,連接OP,OC,AC,證明OCAD,OPAD推出AD平面POC,即可在,PCAD.(II證明PO平面ABCD說明PO為三棱錐P-ACD的高求出PAC的面積,設點D到平面 PAC的距離為h,由VD-PAC=VP-ACD,求出點D到平面PAC的距離,然后求解直線DM與平面PAC所成的角的正弦值

試題解析:1連接,

由題意可知均為正三角形

所以,

,平面平面,

所以平面

平面,

所以

2平面為三棱錐的高

中,

中,

上的高,

所以的面積

設點到平面的距離為,由得,

,

所以,解得

故點到平面的距離為

設直線與平面所成的角為

,

所以直線與平面所成的角的正弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),在上任取三個數(shù),均存在以為三邊的三角形,則實數(shù)的取值范圍為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,已知四邊形為直角梯形, , , 為等邊三角形, , ,如圖2,將, 分別沿折起,使得平面平面,平面平面,連接,設上任意一點.

1)證明: 平面;

2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設函數(shù),存在,使得成立成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)當時,討論的單調(diào)性;

(2)求在區(qū)間上的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了比較兩種治療失眠癥的藥分別稱為A藥,B藥的療效,隨機地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時間后,記錄他們?nèi)掌骄黾拥乃邥r間單位:h,試驗的觀測結果如下:

服用A藥的20位患者日平均增加的睡眠時間:

服用B藥的20位患者日平均增加的睡眠時間:

分別計算兩組數(shù)據(jù)的平均數(shù),從計算結果看,哪種藥的療效更好?

根據(jù)兩組數(shù)據(jù)完成下面莖葉圖,從莖葉圖看,哪種藥的療效更好?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐,,,與△都是等邊三角形

(1)證明:平面

(2)求二面角的平面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)fx對一切實數(shù)x,y均有fx+y-fyx+2y+1x成立,且f1=0

1求f0;

2求fx

3當0<x<2時不等式fx>ax-5恒成立,求a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一側,排法種數(shù)為

A. 80 B. 72 C. 60 D. 40

查看答案和解析>>

同步練習冊答案