已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n2+n
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=an2n(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)當(dāng)n=1時(shí),a1=S1=2;當(dāng)n≥2時(shí),an=Sn-Sn-1=(n2+n)-[(n-1)2-(n-1)]=2n,由此能求出數(shù)列{an}的通項(xiàng)公式.
(2)由已知:bn=2n•2n=n•2n+1,由此利用錯(cuò)位相減法能求出數(shù)列{bn}的前n項(xiàng)和Tn
解答: 解:(1)當(dāng)n=1時(shí),a1=S1=2…(2分)
當(dāng)n≥2時(shí),an=Sn-Sn-1=(n2+n)-[(n-1)2-(n-1)]=2n,
n=1時(shí),也適合上式.
∴an=2n.…(6分)
(2)由已知:bn=2n•2n=n•2n+1,
Tn=1•22+2•23+3•24+…+n•2n+1,①
∴2Tn=1•23+2•24+…+(n-1)•2n+1+n•2n+2,②…(8分)
①-②得:-Tn=22+23+…+2n+1-n•2n+2
=
4(1-2n)
1-2
-n•2n+2,
∴Tn=(n-1)•2n+2+4.…(12分)
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意錯(cuò)位相減法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(cosωx,0),
b
=(
3
sinωx,1)(ω>0),定義函數(shù)f(x)=
a
•(
b
-
a
),且y=f(x)的周期為π.
(1)求f(x)的最大值;
(2)若x∈[
π
12
12
],求滿足f(x)=
3
-1
2
的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將十進(jìn)制數(shù)524轉(zhuǎn)化為八進(jìn)制數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:Sn是數(shù)列{an}的前n項(xiàng)和,其中an=
8n
(2n-1)2•(2n+1)
,計(jì)算S1,S2,S3,S4,得到S4=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=x2+(a+2)x+3,x∈[a,b]的圖象關(guān)于直線x=1對(duì)稱,則b-a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋擲一枚質(zhì)地均勻的硬幣1000次,第999次正面朝上的概率為(  )
A、
1
999
B、
1
2
C、
2
3
D、無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}前n項(xiàng)的和Sn=n2-4n+1(n∈N+)則{an}的通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖的程序圖中,輸出結(jié)果是( 。
A、5B、10C、20D、15

查看答案和解析>>

同步練習(xí)冊(cè)答案