【題目】日晷是中國(guó)古代用來(lái)測(cè)定時(shí)間的儀器,利用與晷面垂直的晷針投射到晷面的影子來(lái)測(cè)定時(shí)間.把地球看成一個(gè)球(球心記為O),地球上一點(diǎn)A的緯度是指OA與地球赤道所在平面所成角,點(diǎn)A處的水平面是指過(guò)點(diǎn)A且與OA垂直的平面.在點(diǎn)A處放置一個(gè)日晷,若晷面與赤道所在平面平行,點(diǎn)A處的緯度為北緯40°,則晷針與點(diǎn)A處的水平面所成角為(

A.20°B.40°

C.50°D.90°

【答案】B

【解析】

畫出過(guò)球心和晷針?biāo)_定的平面截地球和晷面的截面圖,根據(jù)面面平行的性質(zhì)定理和線面垂直的定義判定有關(guān)截線的關(guān)系,根據(jù)點(diǎn)處的緯度,計(jì)算出晷針與點(diǎn)處的水平面所成角.

畫出截面圖如下圖所示,其中是赤道所在平面的截線;是點(diǎn)處的水平面的截線,依題意可知;是晷針?biāo)谥本.是晷面的截線,依題意依題意,晷面和赤道平面平行,晷針與晷面垂直,

根據(jù)平面平行的性質(zhì)定理可得可知、根據(jù)線面垂直的定義可得..

由于,所以

由于,

所以,也即晷針與點(diǎn)處的水平面所成角為.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)對(duì)當(dāng)?shù)氐哪撤N土特產(chǎn)的銷售量y(噸)和銷售單價(jià)x(元/千克)之間的關(guān)系進(jìn)行了調(diào)查,得到下表中的數(shù)據(jù):

銷售單價(jià)x(元/千克)

11

10.5

10

9.5

9

8

銷售量y(噸)

5

6

8

10

11

14.1

1)根據(jù)前5組數(shù)據(jù),求出y關(guān)于x的回歸直線方程.

2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)0.5,則認(rèn)為回歸直線方程是理想的,試問(wèn)(1)中得到的回歸直線方程是否理想?

3)如果銷售量y(噸)和銷售單價(jià)x(元/千克)之間仍然服從(1)中的關(guān)系,進(jìn)貨成本為2.5/千克,且貨源充足(未售完的部分可按成本價(jià)全部售出),為了使利潤(rùn)最大,請(qǐng)你就如何確定銷售單價(jià)給出合理建議.(每千克銷售單價(jià)不超過(guò)12元)

參考公式:回歸直線方程,其中

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù),是自然對(duì)數(shù)的底數(shù),)存在唯一的零點(diǎn),則實(shí)數(shù)的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】祖暅?zhǔn)俏覈?guó)南北朝時(shí)期杰出的數(shù)學(xué)家和天文學(xué)家祖沖之的兒子,他提出了一條原理:“冪勢(shì)既同冪,則積不容異”.這里的“冪”指水平截面的面積,“勢(shì)”指高.這句話的意思是:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體體積相等.一般大型熱電廠的冷卻塔大都采用雙曲線型.設(shè)某雙曲線型冷卻塔是曲線 與直線, 所圍成的平面圖形繞軸旋轉(zhuǎn)一周所得,如圖所示.試應(yīng)用祖暅原理類比求球體體積公式的方法,求出此冷卻塔的體積為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=Asin(ωxφ)(A≠0,ω>0,φ<)的圖象關(guān)于直線對(duì)稱,它的最小正周期為π,則(   )

A. f(x)的圖象過(guò)點(diǎn)(0,) B. f(x)上是減函數(shù)

C. f(x)的一個(gè)對(duì)稱中心是 D. f(x)的一個(gè)對(duì)稱中心是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐PABCD的底面為正方形,PD底面ABCD.設(shè)平面PAD與平面PBC的交線為

1)證明:平面PDC;

2)已知PDAD1,Q上的點(diǎn),QB=,求PB與平面QCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在《周髀算經(jīng)》中,把圓及其內(nèi)接正方形稱為圓方圖,把正方形及其內(nèi)切圓稱為方圓圖.圓方圖和方圓圖在我國(guó)古代的設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.山西應(yīng)縣木塔是我國(guó)現(xiàn)存最古老、最高大的純木結(jié)構(gòu)樓閣式建筑,它的正面圖如下圖所示.以該木塔底層的邊作正方形,以點(diǎn)或點(diǎn)為圓心,以這個(gè)正方形的對(duì)角線為半徑作圓,會(huì)發(fā)現(xiàn)塔的高度正好跟此對(duì)角線長(zhǎng)度相等.以該木塔底層的邊作正方形,會(huì)發(fā)現(xiàn)該正方形與其內(nèi)切圓的一個(gè)切點(diǎn)正好位于塔身和塔頂?shù)姆纸缇上.經(jīng)測(cè)量發(fā)現(xiàn),木塔底層的邊不少于47.5米,塔頂到點(diǎn)的距離不超過(guò)19.9米,則該木塔的高度可能是(參考數(shù)據(jù):)(

A.66.1B.67.3C.68.5D.69.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,過(guò)點(diǎn)P(1,2)的直線l的參數(shù)方程為為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;

(2)若直線l與曲線C相交于M,N兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù) 部分圖象如圖所示.

(1)求的最小正周期及解析式;

(2)設(shè),求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案