【題目】(13分)如圖,在四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=1,O為AC中點,PO⊥平面ABCD,PO=2,M為PD中點.
(Ⅰ)證明:PB∥平面ACM;
(Ⅱ)證明:AD⊥平面PAC;
(Ⅲ)求直線AM與平面ABCD所成角的正切值.
【答案】(Ⅰ)(Ⅱ)見解析(Ⅲ)
【解析】試題(I)由O為AC中點,M為PD中點.結(jié)合平行四邊形的對角線性質(zhì),考慮連接BD,MO,則有PB∥MO,從而可證
(II)由∠ADC=45°,且AD=AC=1,易得AD⊥AC,PO⊥AD,根據(jù)線面垂直的判定定理可證
(III)取DO中點N,由PO⊥平面ABCD,可得MN⊥平面ABCD,從而可得∠MAN是直線AM與平面ABCD所成的角.在Rt△ANM中求解即可
解:(I)證明:連接BD,MO
在平行四邊形ABCD中,因為O為AC的中點,
所以O為BD的中點,又M為PD的中點,所以PB∥MO
因為PB平面ACM,MO平面ACM
所以PB∥平面ACM
(II)證明:因為∠ADC=45°,且AD=AC=1,所以∠DAC=90°,即AD⊥AC
又PO⊥平面ABCD,AD平面ABCD,所以PO⊥AD,AC∩PO=O,AD⊥平面PAC
(III)解:取DO中點N,連接MN,AN
因為M為PD的中點,所以MN∥PO,且MN=PO=1,由PO⊥平面ABCD,得MN⊥平面ABCD
所以∠MAN是直線AM與平面ABCD所成的角.
在Rt△DAO中,,所以,
∴,
在Rt△ANM中,==
即直線AM與平面ABCD所成的正切值為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓:的離心率為,橢圓上一點到左右兩個焦點、的距離之和是4.
(1)求橢圓的方程;
(2)已知過的直線與橢圓交于、兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ACDE所在的平面與平面ABC垂直,M是CE和AD的交點,,且
(1)求證:平面;
(2)求三棱錐的體積.
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在100件產(chǎn)品中,有98件合格品,2件不合格品,從這100件產(chǎn)品中任意抽出3件,則( )
A.抽出的3件中恰好有1件是不合格品的抽法有種
B.抽出的3件中恰好有1件是不合格品的抽法有種
C.抽出的3件中至少有1件是不合格品的抽法有種
D.抽出的3件中至少有1件是不合格品的抽法有種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“”是“直線與直線平行”的( )
A. 充要條件 B. 充分而不必要條件
C. 必要而不充分條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.棱錐的側(cè)棱長與底面多邊形的邊長相等,則此棱錐可能是六棱錐
B.四棱錐的四個側(cè)面都可以是直角三角形
C.有兩個平面互相平行,其余各面都是梯形的多面體是棱臺
D.棱臺的各側(cè)棱延長后不一定交于一點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列中, ,其前項和為,等比數(shù)列的各項均為正數(shù), ,且, .
(1)求數(shù)列和的通項公式;
(2)令,設(shè)數(shù)列的前項和為,求()的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個袋中有2個紅球,4個白球.
(1)從中取出3個球,求取到紅球個數(shù)的概率分布及數(shù)學(xué)期望;
(2)每次取1個球,取出后記錄顏色并放回袋中.
①若取到第二次紅球就停止試驗,求第5次取球后試驗停止的概率;
②取球4次,求取到紅球個數(shù)的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程是.以極點為平面直角坐標(biāo)系的原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是(為參數(shù)).
(Ⅰ)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)若直線與曲線相交于,兩點,且,求直線的傾斜角的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com