【題目】在固定壓力差(壓力差為常數(shù))下,當(dāng)氣體通過圓形管道時,其流量速率,(單位:)與管道半徑r(單位:cm)的四次方成正比.

1)寫出氣體流量速率,關(guān)于管道半徑r的函數(shù)解析式;

2)若氣體在半徑為3cm的管道中,流量速率為,求該氣體通過半徑為r的管道時,其流量速率v的表達(dá)式;

3)已知(2)中的氣體通過的管道半徑為5cm,計算該氣體的流量速率(精確到.

【答案】1;(2;(3

【解析】

1))設(shè)比例系數(shù)為,由題意可得:

2)代入可得

3)利用(2)的表達(dá)式即可得出.

解:(1)設(shè)比例系數(shù)為,氣體的流量速率關(guān)于管道半徑的函數(shù)解析式為.

2)將代入中,有.解得,

所以,氣體通過半徑為r的管道時,其流量速率v的表達(dá)式為.

3)當(dāng)時,.所以,當(dāng)氣體81通過的管道半徑為5cm時,該氣體的流量速率約為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)分別求的值:

(2)討論的解的個數(shù):

(3)若對任意給定的,都存在唯一的,滿足,求實數(shù)

的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱臺被過點的平面截去一部分后得到如圖所示的幾何體,其下底面四邊形是邊長為2的菱形,平面,.

(Ⅰ)求證:平面平面;

(Ⅱ)若與底面所成角的正切值為2,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)已知橢圓的離心率為,橢圓的短軸端點與雙曲線的焦點重合,過點且不垂直于軸的直線與橢圓相交于兩點.

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, ,沿翻折到的位置,使平面平面.

(1)求證: 平面;

(2)若在線段上有一點滿足,且二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖點是半徑為的砂輪邊緣上的一個質(zhì)點,它從初始位置,)開始,按逆時針方向每旋轉(zhuǎn)一周,

1)求點的縱坐標(biāo)關(guān)于時間的函數(shù)關(guān)系;

2)求點的運動周期和頻率;

3)函數(shù)的圖像可由余弦曲線經(jīng)過怎樣的變化得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是圓O的直徑,點C是圓O上異于AB的點,直線平面,E,F分別是的中點.

1)記平面與平面的交線為l,試判斷直線l與平面的位置關(guān)系,并加以證明;

2)設(shè),求二面角大小的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,過拋物線上的一點,作的兩條切線,與軸分別相交于,兩點.

(Ⅰ)若切線過拋物線的焦點,求直線斜率;

(Ⅱ)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列4個正方體中,點,,,分別為正方體的頂點或所在棱的中點,則在這4個正方體中,滿足直線平面的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案