分析 (1)推導出AC⊥BD,PA⊥BD,由此能證明BD⊥面PAC.
(2)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標系,利用向量法能求出二面角E-AC-D的余弦值.
解答 證明:(1)∵棱錐P-ABCD的底面ABCD是矩形,PA⊥面ABCD,
∴AC⊥BD,PA⊥BD,
∵AC∩PA=A,∴BD⊥面PAC.
解:(2)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標系,
∵PA=AD=4,BD=4$\sqrt{2}$,E為PD的中點,
∴A(0,0,0),P(0,0,4),D(0,4,0),E(0,2,2),C(4,4,0),
$\overrightarrow{AE}$=(0,2,2),$\overrightarrow{AC}$=(4,4,0),
設(shè)平面AEC的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AE}=2y+2z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=4x+4y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,1),
平面ACD的法向量$\overrightarrow{m}$=(0,0,1),
設(shè)二面角E-AC-D的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$.
∴二面角E-AC-D的余弦值為$\frac{\sqrt{3}}{3}$.
點評 本題考查線面垂直的證明,考查線面角的余弦值的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:選擇題
A. | π | B. | 2π | C. | 3π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x+$\frac{1}{x}$的最小值為2 | |
B. | 命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x” | |
C. | “x>2“是“$\frac{1}{x}$<$\frac{1}{2}$”的充要條件 | |
D. | ?x∈(0,$\frac{1}{3}$),($\frac{1}{2}$)x<log${\;}_{\frac{1}{3}}$x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,+∞) | B. | (-∞,0) | C. | (2,+∞) | D. | (-∞,-2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2,-$\sqrt{3}$) | B. | (-2,0) | C. | (-3,-$\sqrt{3}$) | D. | (-$\sqrt{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6種 | B. | 24種 | C. | 30種 | D. | 36種 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com