2.已知某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{4}{3}$+πB.4+πC.$\frac{4}{3}$+2πD.4+2π

分析 由三視圖可知:該幾何體由三棱柱與一個半圓柱組成的幾何體.

解答 解:由三視圖可知:該幾何體由三棱柱與一個半圓柱組成的幾何體.
∴該幾何體的體積=$\frac{1}{2}×{2}^{2}×2$+$\frac{1}{2}×$π×12×2=4+π.
故選:B.

點(diǎn)評 本題考查了三棱柱與一個半圓柱的三視圖、體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x(x>0)}\\{|x|(x≤0)}\end{array}\right.$,函數(shù)g(x)滿足以下三點(diǎn)條件:①定義域?yàn)镽;②對任意x∈R,有g(shù)(x)=$\frac{1}{2}$g(x+2);③當(dāng)x∈[-1,1]時(shí),g(x)=$\sqrt{1-{x^2}}$.則函數(shù)y=f(x)-g(x)在區(qū)間[-4,4]上零點(diǎn)的個數(shù)為(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)的定義域是R,f(0)=2,對任意x∈R,f′(x)>f(x)+1,則下列正確的為(  )
A.(f(1)+1)•e>f(2)+1B.3e<f(2)+1
C.3•e≥f(1)+1D.3e2與f(2)+1大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ y+1≥0\\ x+y+1≤0\end{array}\right.$,則2x-y的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx+ax-x2(0<a≤1)
(I)$a=\frac{1}{2}$時(shí),求f(x)的圖象在點(diǎn)(1,f(1))處的切線的方程
(II)設(shè)函數(shù)f(x)單調(diào)遞增區(qū)間為(s,t)(s<t),求t-s的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.一個幾何體的三視圖如圖所示,則這個幾何體的體積為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)為區(qū)間D上的凸函數(shù),則對于D上的任意n個值x1、x2、…、xn,總有f(x1)+f(x2)+…+f(xn)≤nf($\frac{{x}_{1}+{x}_{2}+…+{x}_{n}}{n}$),現(xiàn)已知函數(shù)f(x)=sinx在[0,$\frac{π}{2}$]上是凸函數(shù),則在銳角△ABC中,sinA+sinB+sinC的最大值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3}{2}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.(9x+$\frac{1}{3\sqrt{x}}$)6展開式的常數(shù)項(xiàng)為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.(x+1)5(x-2)的展開式中x2的系數(shù)為( 。
A.25B.5C.-15D.-20

查看答案和解析>>

同步練習(xí)冊答案