A. | (f(1)+1)•e>f(2)+1 | B. | 3e<f(2)+1 | ||
C. | 3•e≥f(1)+1 | D. | 3e2與f(2)+1大小不確定 |
分析 構(gòu)造函數(shù)g(x)=$\frac{f(x)+1}{{e}^{x}}$,利用導(dǎo)數(shù)可判斷函數(shù)g(x)的單調(diào)性,由此可得結(jié)論.
解答 解:構(gòu)造函數(shù)g(x)=$\frac{f(x)+1}{{e}^{x}}$,∴g′(x)=$\frac{f′(x)-f(x)-1}{{e}^{x}}$>0,
∴函數(shù)在R上單調(diào)遞增,
∴g(2)>g(1)>g(0),
∴(f(1)+1)•e<f(2)+1,3•e<f(1)+1,3e2<f(2)+1,
∴3e<f(2)+1,
故選:B.
點(diǎn)評 本題考查函數(shù)單調(diào)性的性質(zhì)及其應(yīng)用,考查抽象不等式的求解,考查導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,綜合性較強(qiáng),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,x2≤0 | B. | $?{x_0}∈R,{x_0}^2>0$ | C. | $?{x_0}∈R,{x_0}^2<0$ | D. | $?{x_0}∈R,{x_0}^2≤0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | 2i | D. | -2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$+π | B. | 4+π | C. | $\frac{4}{3}$+2π | D. | 4+2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com