18.某人準(zhǔn)備投資1200萬元辦一所中學(xué),為了考慮社會效益和經(jīng)濟(jì)效益,對該地區(qū)教育市場進(jìn)行調(diào)查,得出一組數(shù)據(jù),列表如下(以班級為單位).
市場調(diào)查表:
班級學(xué)生數(shù)配備教師數(shù)硬件建設(shè)費(萬元)教師年薪(萬元)
初中502.0281.2
高中402.5581.6
根據(jù)物價部門的有關(guān)規(guī)定:初中是義務(wù)教育階段,收費標(biāo)準(zhǔn)適當(dāng)控制,預(yù)計除書本費、辦公費外,初中每人每年可收取600元.高中每人每年可收取1500元.因生源和環(huán)境等條件限制,辦學(xué)規(guī)模以20至30個班為宜(含20個班與30個),教師實行聘任制.初、高中教育周期均為三年,設(shè)初中編制為x個班,高中編制為y個班,請你合理地安排招生計劃,使年利潤最大.

分析 設(shè)初中x個班,高中y個班,年利潤為z,根據(jù)題意找出約束條件與目標(biāo)函數(shù),準(zhǔn)確地描畫可行域,再利用圖形直線求得滿足題設(shè)的最優(yōu)解.

解答 解:設(shè)開辦初中班x個,高中班y個,收取的學(xué)費總額為z萬元.
根據(jù)題意$\left\{\begin{array}{l}{20≤x+y≤30}\\{28x+58y≤1200}\\{x,y∈N*}\end{array}\right.$,
又設(shè)年利潤為z萬元,那么z=(50×600+10000)x+(40×1500+10000)y-2.4-4y,即z=0.6x+2y,
把z=0.6x+2y變形為y=-0.3x+0.5z,得到斜率為-0.3,在y軸上的截距為0.5z,
隨z變化的一簇平行直線.由圖象可以看到,當(dāng)直線z=0.6x+2y經(jīng)過可行域上的點A時,z最大.
解方程組$\left\{\begin{array}{l}{x+y=30}\\{28x+58y=1200}\end{array}\right.$得x=18,y=12,
即點A的坐標(biāo)為(18,12),
所以 zmax=0.6×18+2×12=34.8
由此可知,開辦18個初中班和12個高中班,年利潤最大

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程是$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),以坐標(biāo)原點為極點,以x軸的正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$.
(Ⅰ)將曲線C的參數(shù)方程化為普通方程,將直線l的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)點P在曲線C上,求點P到直線l的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=sin4x+cos4x+$\frac{\sqrt{3}}{2}$sin2xcos2x
(1)求f(x)的最小正周期
(2)當(dāng)x∈[0,$\frac{π}{4}$]時,求f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,AC=4,BC=6,∠ACB=120°,若$\overrightarrow{AD}$=-2$\overrightarrow{BD}$,則$\overrightarrow{AC}$•$\overrightarrow{CD}$=$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}sinα-cosα}\\{y=3-2\sqrt{3}sinαcosα-2co{s}^{2}α}\end{array}\right.$ (α為參數(shù)),以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系.曲線C2的極坐標(biāo)方程為ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$m
(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)若曲線C1與曲線C2有公共點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線x+y=3被曲線x2+y2-2y-3=0截得的弦長為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)i為虛數(shù)單位,則復(fù)數(shù)$\frac{{i}^{3}}{2-i}$=$\frac{1}{5}-\frac{2}{5}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知cosα=$\frac{3}{5}$,cos(α-β)=$\frac{{7\sqrt{2}}}{10}$,且0<β<α<$\frac{π}{2}$,那么β=( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是夾角為60o的兩個單位向量,則$\overrightarrow a$=2$\overrightarrow{e_1}$+$\overrightarrow{e_2}$,$\overrightarrow b$=-3$\overrightarrow{e_1}$+2$\overrightarrow{e_2}$夾角為( 。
A.30oB.60oC.120oD.150o

查看答案和解析>>

同步練習(xí)冊答案