17.($\frac{1}{\sqrt{x}}$-x210的展開式中x5的系數(shù)為210.

分析 利用二項式展開式的通項公式,令x的指數(shù)等于5,求出r的值,再計算展開式中含x5項的系數(shù).

解答 解:($\frac{1}{\sqrt{x}}$-x210的展開式中,通項公式為:
Tr+1=${C}_{10}^{r}$•${(\frac{1}{\sqrt{x}})}^{10-r}$•(-x2r=(-1)r•${C}_{10}^{r}$•${x}^{\frac{5r}{2}-5}$,
令$\frac{5r}{2}$-5=5,解得r=4;
∴展開式中含x5項的系數(shù)為(-1)4•${C}_{10}^{4}$=210.
故答案為:210.

點評 本題考查了二項式展開式通項公式的應用問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.某市需對某環(huán)城快速車道進行限速,為了調(diào)研該道路車速情況,于某個時段隨機對100輛車的速度進行取樣,測量的車速制成如下條形圖:

經(jīng)計算:樣本的平均值μ=85,標準差σ=2.2,以頻率值作為概率的估計值.已知車速過慢與過快都被認為是需矯正速度,現(xiàn)規(guī)定車速小于μ-3σ或車速大于μ+2σ是需矯正速度.
(1)從該快速車道上所有車輛中任取1個,求該車輛是需矯正速度的概率;
(2)從樣本中任取2個車輛,求這2個車輛均是需矯正速度的概率;
(3)從該快速車道上所有車輛中任取2個,記其中是需矯正速度的個數(shù)為ε,求ε的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知向量$\overrightarrow{a}$,$\overrightarrow$夾角為60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$-2$\overrightarrow$|=2$\sqrt{7}$,則|$\overrightarrow$|=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在多面體ABCDE中,平面ABC⊥平面BCE,四邊形ABED為平行四邊形,AB=AC=BC=2,CE=1,BE=$\sqrt{5}$,O為AC的中點.
(1)求證:BO⊥AE;
(2)求平面ABC與平面ACD所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設等比數(shù)列{an}的前n項和為Sn,若S3,S9,S6成等差數(shù)列.且a2+a5=4,則a8的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.2016年,某省環(huán)保部門制定了《省工業(yè)企業(yè)環(huán)境保護標準化建設基本要求及考核評分標準》,為了解本省各家企業(yè)對環(huán)保的重視情況,從中抽取了40家企業(yè)進行考核評分,考核評分均在[50,100]內(nèi),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖如圖(滿分為100分).
(Ⅰ)已知該省對本省每家企業(yè)每年的環(huán)保獎勵y(單位:萬元)與考核評分x的關系式為y=$\left\{\begin{array}{l}{-7,50≤x<60}\\{0,60≤x<70}\\{3,70≤x<80}\\{6,80≤x<100}\end{array}\right.$(負值為企業(yè)上繳的罰金),試估計該省在2016年對這40家企業(yè)投放環(huán)保獎勵的平均值;
(Ⅱ)在這40家企業(yè)中,從考核評分在80分以上(含80分)的企業(yè)中隨機抽取2家企業(yè)座談環(huán)保經(jīng)驗,求抽取的2家企業(yè)全部為考核評分在[80,90)內(nèi)的企業(yè)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知數(shù)列{an}滿足an=$\left\{\begin{array}{l}{(\frac{1}{2}-a)n+1(n<6)}\\{{a}^{n-5}(n≥6)}\end{array}\right.$若對于任意的n∈N*都有an>an+1,則實數(shù)a的取值范圍是( 。
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,$\frac{7}{12}$)C.($\frac{1}{2}$,1)D.($\frac{7}{12}$,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在等比數(shù)列{an}中,${a_3}=\frac{3}{2},{S_3}=\frac{9}{2}$.
(1)求數(shù)列{an}的通項公式;
(2)設${b_n}={log_2}\frac{6}{{{a_{2n+1}}}}$,且{bn}為遞增數(shù)列,若${c_n}=\frac{1}{{{b_n}^2}}$,求證:${c_1}+{c_2}+{c_3}+…+{c_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.求下列函數(shù)的導數(shù):
(1)y=x3-cosx;
(2)y=(3x2+2)(x-5)

查看答案和解析>>

同步練習冊答案