2.已知函數(shù)$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}+x+1$,若f(m)+f(m-1)>2,則實(shí)數(shù)m的取值范圍是($\frac{1}{2}$,+∞).

分析 求出f(-x)+f(x)=2,得到f(m-1)>f(-m),根據(jù)函數(shù)f(x)在R遞增,求出m的范圍即可.

解答 解:∵$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}+x+1$=2+x-$\frac{2}{{2}^{x}+1}$,
f(-x)=-x+$\frac{2}{{2}^{x}+1}$,
∴f(x)+f(-x)=2,故f(m)+f(-m)=2,
故f(m)+f(m-1)>2即f(m)+f(m-1)>f(m)+f(-m),
即f(m-1)>f(-m),而f(x)在R遞增,
故m-1>-m,解得:m>$\frac{1}{2}$,
故答案為:$({\frac{1}{2},+∞})$.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性問題,求出f(x)和f(-x)的關(guān)系是解題的關(guān)鍵,本題是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合P=$\{x|y=\sqrt{x+1}\}$,集合Q=$\{y|y=\sqrt{x+1}\}$,則P與Q的關(guān)系是( 。
A.P=QB.P⊆QC.P?QD.P∩Q=ϕ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某校共有17人獲得北大、清華保送資格,具體人數(shù)如下:
競賽學(xué)科數(shù)學(xué)物理化學(xué)
北大642
清華104
若隨機(jī)從獲取北大、清華保送資格的學(xué)生中各取一名,則至少1人是參加數(shù)學(xué)競賽的概率為( 。
A.$\frac{1}{10}$B.$\frac{3}{5}$C.$\frac{15}{34}$D.$\frac{91}{136}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\frac{1}{{\sqrt{2-x}}}+\sqrt{x+2}$的定義域?yàn)椋ā 。?table class="qanwser">A.{x|x≥-2}B.{x|x<2}C.{x|-2<x<2}D.{x|-2≤x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知角α的終邊經(jīng)過點(diǎn)$P({sin\frac{5π}{6},cos\frac{5π}{6}})$,則角α為第四象限角,與角α終邊相同的最小正角是$\frac{5π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知全集A={70,1946,1997,2003},B={1,10,70,2016},則A∩B={70}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),F(xiàn)1,F(xiàn)2分別為其左右焦點(diǎn),
(1)已知P,Q為橢圓C上兩動點(diǎn),直線PQ過點(diǎn)F2(c,0),且不垂直于x軸,△PQF1的周長為8,且橢圓的短軸長為2$\sqrt{3}$,求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知A(a,0),B(0,b),B′(0,-b),F(xiàn)2(c,0),若直線AB⊥B′F2,求橢圓C的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.圓x2+y2-8x+6y-11=0的圓心、半徑是( 。
A.(4,3),6B.(4,-3),6C.(4,3),36D.(4,-3),36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.奇函數(shù)f(x)滿足:①f(x)在(0,+∞)內(nèi)是單調(diào)遞減函數(shù);②f(2)=0.則不等式(x-1)•f(x)>0的解集為(-2,0)∪(1,2).

查看答案和解析>>

同步練習(xí)冊答案