精英家教網 > 高中數學 > 題目詳情

【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位.若直線的參數方程為為參數),曲線的極坐標方程為.

(I)求直線的普通方程與曲線的直角坐標方程;

(II)設直線與曲線相交于兩點,若點的直角坐標為,求的值.

【答案】(1).

(2) .

【解析】分析:(I)由直線參數方程消參數去,即可求得直線的普通方程,再利用極坐標與直角坐標的互化公式,即可求解曲線的直角坐標方程;

(II)把直線的參數方程為為參數),曲線的直角坐標方程,求得即可利用參數的幾何意義求解結論.

詳解:(I)由參數方程為參數)消去可得,

即直線的普通方程為.

可得,因此

所以,

故曲線的直角坐標方程為.

(II)由于,令,則直線的參數方程為為參數).

代入曲線的直角坐標方程可得,

兩點對應的參數分別為,則,

于是.

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|xex|,方程f2(x)+tf(x)+1=0(t∈R)有四個實數根,則t的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的長軸長為6,且橢圓與圓 的公共弦長為.

(1)求橢圓的方程.

(2)過點作斜率為的直線與橢圓交于兩點, ,試判斷在軸上是否存在點,使得為以為底邊的等腰三角形.若存在,求出點的橫坐標的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四邊形ABCD滿足AD∥BC,BA=AD=DC=BC=a,E是BC的中點,將△BAE沿AE折起到△B1AE的位置,使平面B1AE⊥平面AECD,F為B1D的中點.
(1)證明:B1E∥平面ACF;
(2)求平面ADB1與平面ECB1所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】洛薩·科拉茨是德國數學家,他在1937年提出了一個著名的猜想:任給一個正整數,如果是偶數,就將它減半(即);如果是奇數,則將它乘3加1(即),不斷重復這樣的運算,經過有限步后,一定可以得到1,如初始正整數為6,按照上述變換規(guī)則,我們得到一個數列:6,3,10,5,16,8,4,2,1.對科拉茨猜想,目前誰也不能證明,更不能否定,如果對正整數按照上述規(guī)則實施變換(注:1可以多次出現)后的第九項為1,則的所有可能取值的集合為_________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于函數f(x)=(2x-x2)ex

(-)是f(x)的單調遞減區(qū)間;

f(-)是f(x)的極小值,f()是f(x)的極大值;

f(x)沒有最大值,也沒有最小值;

f(x)有最大值,沒有最小值.

其中判斷正確的是_________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】大家知道,莫言是中國首位獲得諾貝爾獎的文學家,國人歡欣鼓舞.某高校文學社從男女生中各抽取50名同學調查對莫言作品的了解程度,結果如下:

閱讀過莫言的
作品數(篇)

0~25

26~50

51~75

76~100

101~130

男生

3

6

11

18

12

女生

4

8

13

15

10

(Ⅰ)試估計該校學生閱讀莫言作品超過50篇的概率;
(Ⅱ)對莫言作品閱讀超過75篇的則稱為“對莫言作品非常了解”,否則為“一般了解”.根據題意完成下表,并判斷能否有75%的把握認為對莫言作品的非常了解與性別有關?

非常了解

一般了解

合計

男生

女生

合計

附:K2=

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|2x﹣1|,當a<b<c時,f(a)>f(c)>f(b),那么正確的結論是( 。
A.2a>2b
B.2a>2c
C.2﹣a<2c
D.2a+2c<2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx)=-sin2x+mcosx-1,x∈[].

(1)若fx)的最小值為-4,求m的值;

(2)當m=2時,若對任意x1,x2∈[-]都有|fx1)-fx2)|恒成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案