分析 利用同角三角函數(shù)的基本關(guān)系,兩角差的三角公式,化簡等式的左邊,可得結(jié)論.
解答 證明:∵已知$\frac{tan(α-γ)}{tanα}$+$\frac{si{n}^{2}β}{si{n}^{2}α}$=1,∴$\frac{sin(α-γ)cosα}{sinαcos(α-γ)}$+$\frac{{sin}^{2}β}{{sin}^{2}α}$=1,
∴sin2β=sin2α•[1-$\frac{sin(α-γ)cosα}{cos(α-γ)sinα}$]=sin2α•$\frac{cos(α-γ)sinα-sin(α-γ)cosα}{cos(α-γ)sinα}$=$\frac{{sin}^{2}αcos(α-γ)-sinαcosαsin(α-γ)}{cos(α-γ)}$
=sinα•$\frac{sin[α-(α-γ)]}{cos(α-γ)}$=$\frac{sinαsinγ}{cos(α-γ)}$=$\frac{sinαsinγ}{cosαcosγ+sinαsinγ}$.
∵tan2β=$\frac{{sin}^{2}β}{1{-sin}^{2}β}$=$\frac{\frac{sinαsinγ}{cosαcosγ+sinαsinγ}}{1-\frac{sinαsinγ}{cosαcosγ+sinαsinγ}}$=$\frac{sinαsinγ}{cosαcosγ}$=tanα•tanγ,
∴tan2β=tanαtanγ成立.
點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的三角公式的應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 1.5 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 數(shù)列1,3,5,7與7,5,3,1是同一數(shù)列 | |
B. | 數(shù)列0,1,2,3,…的通項(xiàng)公式是an=n | |
C. | -1,1,-1,1,…是常數(shù)列 | |
D. | 1,2,22,23,…是遞增數(shù)列,也是無窮數(shù)列 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{1}{e}$,e] | B. | [-$\frac{2}{e}$,2e] | C. | (-$\frac{2}{e}$,2e) | D. | [-$\frac{3}{e}$,3e] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com