14.已知以點(diǎn)C(a,$\frac{2}{a}$)(a∈R,a≠0)為圓心的圓與x軸相交于O,A兩點(diǎn),與y軸相交于O,B兩點(diǎn),其中O為原點(diǎn).
(1)當(dāng)a=2時(shí),求圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)a變化時(shí),△OAB的面積是否為定值?若是,求出定值;若不是,請(qǐng)說(shuō)明理由;
(2)設(shè)直線l:2x+y-4=0與圓C相交于M,N兩點(diǎn),且|OM|=|ON|,求|MN|的值.

分析 (1)求出圓心與半徑,寫(xiě)出圓的方程即可.
(2)通過(guò)題意解出OC的方程,解出t 的值,直線y=-2x+4與圓C交于點(diǎn)M,N,判斷t是否符合要求,可得圓的方程.

解答 解:(1)a=2時(shí),以點(diǎn)C(2,1)為圓心的圓與x軸相交于O,A兩點(diǎn),與y軸相交于O,B兩點(diǎn),
∵圓C過(guò)原點(diǎn)O,
∴OC2=22+12=5.
則圓C的方程是(x-2)2+(y-1)2=5,
(2)∵圓C過(guò)原點(diǎn)O,
∴OC2=a2+$\frac{4}{{a}^{2}}$,
則圓C的方程是(x-a)2+(y-$\frac{2}{a}$)2=a2+$\frac{4}{{a}^{2}}$,
令x=0,得y1=0,y2=$\frac{4}{a}$,
令y=0,得x1=0,x2=2a
∴S△OAB=$\frac{1}{2}$OA×OB=$\frac{1}{2}$×|$\frac{4}{a}$|×|2a|=4,
即:△OAB的面積為定值;
(3)∵|OM|=|ON|,|CM|=|CN|,
∴OC垂直平分線段MN,
∵kMN=-2,∴koc=$\frac{1}{2}$,
∴直線OC的方程是y=$\frac{1}{2}$x,
∴$\frac{2}{a}$=$\frac{1}{2}$t,解得:a=2或a=-2,
當(dāng)a=-2時(shí),圓心C的坐標(biāo)為(-2,-1),OC=$\sqrt{5}$,
此時(shí)C到直線y=-2x+4的距離d=$\frac{9}{\sqrt{5}}$>$\sqrt{5}$,
圓C與直線y=-2x+4不相交,
∴a=-2不符合題意舍去,
∴圓C的方程為(x-2)2+(y-1)2=5.
當(dāng)t=2時(shí),圓心C的坐標(biāo)為(2,1),OC=$\sqrt{5}$,
此時(shí)C到直線y=-2x+4的距離d=$\frac{1}{\sqrt{5}}$<$\sqrt{5}$,
圓C與直線y=-2x+4相交于兩點(diǎn),
|MN|=$2\sqrt{{r}^{2}-ccosgwc^{2}}$=$2\sqrt{5-\frac{1}{5}}$=$\frac{4}{5}\sqrt{30}$.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,圓的標(biāo)準(zhǔn)方程等有關(guān)知識(shí),是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖所示,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長(zhǎng)為2的菱形,且∠ABC=60°,AA1=3,AC,BD相交于點(diǎn)O,E為線段AD1上一點(diǎn).
(1)試確定點(diǎn)E的位置,使得A1B∥OE;
(2)在(1)的條件下,求A1C與平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.解不等式:
(1)$\frac{x-1}{2x}$≤1;
(2)$\frac{{x}^{2}-2x+2}{x}$>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.曲線C的極坐標(biāo)方程是ρ=4sin(θ-$\frac{π}{6}$),直線l的參數(shù)方程是$\left\{\begin{array}{l}x=-\frac{3}{5}t+2\\ y=\frac{4}{5}t\end{array}$(t為參數(shù)).
(1)將曲線C的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;
(2)設(shè)直線l與x軸的交點(diǎn)是M,N為曲線C上一動(dòng)點(diǎn),求|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,已知圓上的四點(diǎn)A、B、C、D,CD∥AB,過(guò)點(diǎn)D的圓的切線DE與BA的延長(zhǎng)線交于E點(diǎn).
(1)求證:∠CDA=∠EDB
(2)若BC=CD=5,DE=7,求線段BE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.集合A若滿足a∈A,-a∉A,M={(x,y)|x∈A,y∈A,x+y∈A},N={(x,y)|x∈A,y∈A,x-y∈A},若A={-1,2,3,4},寫(xiě)出M、N分別為{(-1,4),(-1,3),(2,2)}和{(2,3),(3,4)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知雙曲線方程x2-8y2=32,則( 。
A.實(shí)軸長(zhǎng)為$4\sqrt{2}$,虛軸長(zhǎng)為2B.實(shí)軸長(zhǎng)為$8\sqrt{2}$,虛軸長(zhǎng)為4
C.實(shí)軸長(zhǎng)為2,虛軸長(zhǎng)為$4\sqrt{2}$D.實(shí)軸長(zhǎng)為4,虛軸長(zhǎng)為$8\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知遞增等差數(shù)列{an}中,a1=1,a${\;}_{2}^{2}$=a1a5,則a10=19.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若b在[0,10]上隨機(jī)地取值,則使方程x2-bx+b+3=0有實(shí)根的概率是$\frac{2}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案