2.將函數(shù)y=sin(2x-$\frac{π}{6}$)的圖象向左平移$\frac{1}{6}$個最小正周期后,所得圖象對應(yīng)的函數(shù)解析式為( 。
A.y=sin(2x+$\frac{π}{6}$)B.y=sin2xC.y=sin(2x+$\frac{π}{3}$)D.y=sin(2x-$\frac{π}{3}$)

分析 根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:將函數(shù)y=sin(2x-$\frac{π}{6}$)的圖象向左平移$\frac{1}{6}$個最小正周期后,
所得圖象對應(yīng)的函數(shù)解析式為y=sin(2x+2•$\frac{1}{6}•\frac{2π}{2}$-$\frac{π}{6}$)=sin(2x+$\frac{π}{6}$)的圖象,
故選:A.

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,PC⊥平面ABCD,點(diǎn)E在棱PA上.
(Ⅰ)求證:直線BD⊥平面PAC;
(Ⅱ)若PC∥平面BDE,求證:AE=EP;
(Ⅲ)是否存在點(diǎn)E,使得四面體A-BDE的體積等于四面體P-BDC的體積的$\frac{1}{3}$?若存在,求出$\frac{PE}{PA}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,A,B,E是⊙O上的點(diǎn),過E點(diǎn)的⊙O的切線與直線AB交于點(diǎn)P,∠APE的平分線和AE,BE分別交于點(diǎn)C,D.求證:
(1)DE=CE;
(2)$\frac{CA}{CE}=\frac{PE}{PB}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.17世紀(jì)日本數(shù)學(xué)家們對這個數(shù)學(xué)關(guān)于體積方法的問題還不了解,他們將體積公式“V=kD3”中的常數(shù)k稱為“立圓術(shù)”或“玉積率”,創(chuàng)用了求“玉積率”的獨(dú)特方法“會玉術(shù)”,其中,D為直徑,類似地,對于等邊圓柱(軸截面是正方形的圓柱叫做等邊圓柱)、正方體也有類似的體積公式V=kD3,其中,在等邊圓柱中,D表示底面圓的直徑;在正方體中,D表示棱長,假設(shè)運(yùn)用此“會玉術(shù)”,求得的球、等邊圓柱、正方體的“玉積率”分別為k1,k2,k3=( 。
A.$\frac{π}{4}$:$\frac{π}{6}$:1B.$\frac{π}{6}$:$\frac{π}{4}$:2C.1:3:$\frac{12}{π}$D.1:$\frac{3}{2}$:$\frac{6}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖1,菱形ABCD的對角線AC與BD交于點(diǎn)E,∠BAD=60°,將△BAD折起,使得點(diǎn)A到點(diǎn)A′的位置,點(diǎn)P滿足$\overrightarrow{CP}$=λ$\overrightarrow{CA′}$+(1-λ)$\overrightarrow{CE}$.

(1)證明:BD⊥CP;
(2)若λ=$\frac{1}{2}$,二面角A′-BD-C為120°,求直線BP與平面A′CD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某校從高一年級學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖,其中前三段的頻率成等比數(shù)列.
(Ⅰ)求圖中實(shí)數(shù)a的值;
(Ⅱ)若該校高一年級共有學(xué)生640人,試估計(jì)該校高一年級期中考試數(shù)學(xué)成績不低于80分的人數(shù);
(Ⅲ)若從樣本中數(shù)學(xué)成績在[40,50)與[90,100]兩個分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,求這兩名學(xué)生的數(shù)學(xué)成績之差的絕對值大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若x,y滿足約束條件$\left\{{\begin{array}{l}{x-y≤0}\\{2x-y≥0}\\{2x+y≤4}\end{array}}\right.$,z=x+y+3與z=x+ny取得最大值的最優(yōu)解相同,則實(shí)數(shù)n的取值范圍是(  )
A.{1}B.$({-∞,\frac{1}{2}})$C.$({\frac{1}{2},+∞})$D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某研究性學(xué)習(xí)小組調(diào)查研究性別對喜歡吃甜食的影響,部分統(tǒng)計(jì)數(shù)據(jù)如表:
  女生 男生 合計(jì)
 喜歡吃甜食 8 4 12
 不喜歡吃甜食216 18
 合計(jì) 10 20 30
附表:
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
經(jīng)計(jì)算K2=10,則下列選項(xiàng)正確的是(  )
A.有99.5%的把握認(rèn)為性別對喜歡吃甜食無影響
B.有99.5%的把握認(rèn)為性別對喜歡吃甜食有影響
C.有99.9%的把握認(rèn)為性別對喜歡吃甜食無影響
D.有99.9%的把握認(rèn)為性別對喜歡吃甜食有影響

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在多面體ABCDEF中,底面ABCD是邊長為2的菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,DE=2,M為線段BF的中點(diǎn).
(1)求三棱錐M-CDE的體積;
(2)求證:DM⊥平面ACE.

查看答案和解析>>

同步練習(xí)冊答案