13.如圖,A,B,E是⊙O上的點(diǎn),過E點(diǎn)的⊙O的切線與直線AB交于點(diǎn)P,∠APE的平分線和AE,BE分別交于點(diǎn)C,D.求證:
(1)DE=CE;
(2)$\frac{CA}{CE}=\frac{PE}{PB}$.

分析 (1)證明∠PEB=∠PAC,∠EPC=∠CPA,可得∠ECD=∠EDC,即可證明結(jié)論;
(2)證明△EPB∽△APE,得$\frac{PE}{PB}$=$\frac{PA}{PE}$,PC是∠APE的平分線,得$\frac{PA}{PE}$=$\frac{CA}{CE}$,即可證明結(jié)論.

解答 證明:(1)∵PE是⊙O的切線,
∴∠PEB=∠PAC,
∵PC是∠APE的平分線,
∴∠EPC=∠CPA,
∴∠PEB+∠EPC=∠PAC+∠CPA,
∴∠ECD=∠EDC,
∴DE=CE;
(2)∵∠PEB=∠PAC,∠EPB=∠APE,
∴△EPB∽△APE,
∴$\frac{PE}{PB}$=$\frac{PA}{PE}$,
∵PC是∠APE的平分線,
∴$\frac{PA}{PE}$=$\frac{CA}{CE}$,
∴$\frac{CA}{CE}=\frac{PE}{PB}$.

點(diǎn)評 本題考查圓的切線的性質(zhì),考查三角形相似的判定與性質(zhì),考查角平分線的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.二項(xiàng)式$(x-\frac{2}{x}{)^6}$的展開式的第二項(xiàng)是( 。
A.6x4B.-6x4C.12x4D.-12x4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在區(qū)間(0,6)上隨機(jī)取一個(gè)實(shí)數(shù)x,則滿足log2x的值介于1到2之間的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.袋中有2個(gè)黃球3個(gè)白球,甲乙兩人分別從中任取一球,取得黃球得1分,取得白球得2分,兩人總分和為X,則X=3的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)$f(x)=\left\{\begin{array}{l}|{log_2}x|,x>0\\-{x^2}-2x,x≤0\end{array}\right.$,關(guān)于x的方程f(x)=m(m∈R)有四個(gè)不同的實(shí)數(shù)解x1,x2,x3,x4則x1x2x3x4的取值范圍為(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,E,F(xiàn)分別是AB,PD的中點(diǎn),且PA=AD.
(Ⅰ)求證:AF∥平面PEC;
(Ⅱ)求證:平面PEC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)i是虛數(shù)單位,$\overline{z}$表示復(fù)數(shù)z的共軛復(fù)數(shù),若z=2-i,則z+i$\overline{z}$在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.將函數(shù)y=sin(2x-$\frac{π}{6}$)的圖象向左平移$\frac{1}{6}$個(gè)最小正周期后,所得圖象對應(yīng)的函數(shù)解析式為( 。
A.y=sin(2x+$\frac{π}{6}$)B.y=sin2xC.y=sin(2x+$\frac{π}{3}$)D.y=sin(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.證明:若點(diǎn)O是△ABC的內(nèi)心,則sinA$\overrightarrow{OA}$+sinB$\overrightarrow{OB}$+sinC$\overrightarrow{OC}$=$\overrightarrow{0}$.

查看答案和解析>>

同步練習(xí)冊答案