11.函數(shù)f(x)=$\sqrt{2x-{x^2}}$的單調(diào)遞增區(qū)間是[0,1].

分析 根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系進(jìn)行求解即可.

解答 解:設(shè)t=2x-x2,則y=$\sqrt{t}$為增函數(shù),
由2x-x2≥0,得0≤x≤2,即函數(shù)的定義域?yàn)閇0,2],
函數(shù)t=2x-x2的對(duì)稱軸為x=1,
要求f(x)的單調(diào)遞增區(qū)間,即求函數(shù)t=2x-x2的單調(diào)遞增區(qū)間,
∵t=2x-x2的單調(diào)遞增區(qū)間為[0,1],
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[0,1],
故答案為:[0,1]

點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)遞增區(qū)間的求解,根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系,利用換元法是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)m,n為兩條不同的直線,α,β,γ為三個(gè)不同的平面,則下列命題中為假命題的是( 。
A.若m⊥α,n⊥α,則m∥nB.若α∥β,β⊥γ,則α⊥γC.若m∥n,m⊥α,則n⊥αD.若α⊥γ,β⊥γ,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.某中學(xué)為了了解學(xué)生的課外閱讀情況,隨機(jī)調(diào)查了50名學(xué)生,得到他們?cè)谀骋惶旄髯哉n外閱讀所用時(shí)間的數(shù)據(jù),結(jié)果用圖的條形圖表示.根據(jù)條形圖可得這50名學(xué)生這一天平均每人的課外閱讀時(shí)間為0.97小時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若直線3x+4y+m=0與圓x2+y2-2x+4y+1=0沒(méi)有公共點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.-5<m<15B.m<-5或m>15C.m<4或m>13D.4<m<13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合P={x|-$\frac{1}{3}$≤x≤3},Q={x|-2<x≤$\frac{1}{3}$}.則集合P∪Q=( 。
A.[-2,3)B.(-2,3]C.$[{-\frac{1}{3},3})$D.$[{-\frac{1}{3},\frac{1}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知ω>0,在函數(shù)y=2sinωx與y=2cosωx的圖象交點(diǎn)中,距離最短的兩個(gè)交點(diǎn)的距離為2$\sqrt{3}$,則ω的值為( 。
A.πB.$\frac{π}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.經(jīng)過(guò)點(diǎn)P(0,-1)作直線l,若直線l與連接A(1,-2),B(2,1)的線段總有公共點(diǎn),則斜率k的取值范圍為(  )
A.[-1,1]B.(-1,1)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)集合A={x|-4<x<2},B={x|x<1},則如圖中陰影部分表示的集合為[1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知方程ax2+x+b=0.
(1)若方程的解集為{1},求實(shí)數(shù)a,b的值;
(2)若方程的解集為{1,3},求實(shí)數(shù)a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案