3.經(jīng)過點P(0,-1)作直線l,若直線l與連接A(1,-2),B(2,1)的線段總有公共點,則斜率k的取值范圍為( 。
A.[-1,1]B.(-1,1)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

分析 由于直線l與連接A(1,-2)、B(2,1)的線段沒有公共點,可得kPB≤k≤kPA,再利用斜率計算公式即可得出.

解答 解:kPA=$\frac{-2-(-1)}{1-0}$=-1,kPB=$\frac{-1-1}{0-2}$=1.
∵直線l與連接A(1,-2)、B(2,1)的線段總有公共點,
∴kPB≤k≤kPA,
∴-1≤k≤1.
故選:A.

點評 本題考查了直線相交問題、斜率計算公式,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖,已知$\overrightarrow{OA}=\overrightarrow a,\overrightarrow{OB}=\overrightarrow b$,任意點M關(guān)于點A的對稱點為S,點S關(guān)于點B的對稱點為N,則$\overrightarrow{MN}$=(  )
A.$\overrightarrow a+\overrightarrow b$B.$2\overrightarrow a+3\overrightarrow b$C.$3\overrightarrow a-2\overrightarrow b$D.$2\overrightarrow b-2\overrightarrow a$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知集合A={x|-6≤x≤5},B={x|a≤x<2a+4},且B⊆∁RA,則實數(shù)a的取值范圍是a≤-4或a>5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)f(x)=$\sqrt{2x-{x^2}}$的單調(diào)遞增區(qū)間是[0,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知sinα-2cosα=0.
(1)求tan(α+$\frac{π}{4}$)的值;
(2)求$\frac{sin2α}{si{n}^{2}α+sinαcosα-cos2α-1}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)y=2${\;}^{-{x^2}+2x+3}}$的值域為(0,16].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)f(x)=$\left\{\begin{array}{l}\frac{1}{x}(x>0).\\ ln|x|(x<0)\end{array}$的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=2$\sqrt{3}$sin xcos x-3sin2x-cos2x+2.
(1)求f(x)的最大值;
(2)若△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足$\frac{a}$=$\sqrt{3}$,sin(2A+C)=2sin A+2sin Acos(A+C),求f(B)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如圖,在銳角△ABC中,$\overrightarrow{AN}$=$\frac{1}{2}$$\overrightarrow{NC}$,P是線段BN(不含端點)上的一點,若$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,則$\frac{1}{m}$+$\frac{3}{n}$的最小值為16.

查看答案和解析>>

同步練習冊答案