已知{an}是等比數(shù)列,且a2=3,a4=27
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=|an|,求{bn}的前n項(xiàng)的和Sn
考點(diǎn):數(shù)列的求和,等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件,利用等比數(shù)列的通項(xiàng)公式列出方程組,求出公比和首項(xiàng),由此能求出數(shù)列{an}的通項(xiàng)公式.
(2)由(1)得到bn=|an|=3n-1,由此能求出{bn}的前n項(xiàng)和.
解答: 解:(1)∵{an}是等比數(shù)列,且a2=3,a4=27,
a1q=3
a1q3=27
,
解得
a1=1
q=3
,或
a1=-1
q=-3
,
當(dāng)
a1=1
q=3
時(shí),an=3n-1
當(dāng)
a1=-1
q=-3
時(shí),an=(-1)•(-3)n-1=-(-3)n-1
∴q=3時(shí),an=3n-1;q=-3時(shí),an=-(-3)n-1
(2)∵q=3時(shí),an=3n-1,q=-3時(shí),an=-(-3)n-1,
∴bn=|an|=3n-1,
∴{bn}是首項(xiàng)為1,公比為3的等比數(shù)列,
∴Sn=
1×(1-3n)
1-3
=
3n-1
2
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的求法,是中檔題,解題時(shí)要熟練掌握等比數(shù)列的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

條件p:-2<x<4,條件q:(x+2)(x+a)<0;若p是q的充分而不必要條件,則a的取值范圍是( 。
A、(4,+∞)
B、(-∞,-4)
C、(-∞,-4]
D、[-4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圖示是一個(gè)幾何體的直觀圖,畫出它的三視圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),當(dāng)a、b∈R且a+b≠0時(shí),總有[f(a)+f(b)](a+b)>0成立.
(1)若a>b,比較f(a)與f(b)的大。
(2)若關(guān)于x的不等式f(m×2x)+f(2x-4x+m)<0對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐P-ABC中,側(cè)棱長(zhǎng)均為
97
2
,底邊AC=4,AB=2,BC=2
3
,D、E分別為PC、BC的中點(diǎn).
(Ⅰ)求三棱錐P-ABC的體積;
(Ⅱ)求二面角C-DA-E的平面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,底面ABCD是一直角梯,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,PA⊥底面ABCD,PD與底面成30°角.
(1)若AE⊥PD,E為垂足,求證:BE⊥PD;
(2)在(1)的條件下,求異面直線AE與CD所成角的余弦值;
(3)求平面PAB與平面PCD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(2-x)ex,g(x)=(x2+ax-2a-3)ex,求證:當(dāng)a≥-3時(shí),一定存在x1、x2∈[0,5],使得f(x1)-g(x2)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=
2
a,在線段SA上取一點(diǎn)E(不含端點(diǎn))使EC=AC,截面CDE與SB交于點(diǎn)F.
(1)求證:四邊形EFCD為直角梯形;
(2)求二面角B-EF-C的平面角的正切值;
(2)設(shè)SB的中點(diǎn)為M,當(dāng)
CD
AB
的值是多少時(shí),能使△DMC為直角三角形?請(qǐng)給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax+b,且不等式|f(x)|≤2|x2-x-2|對(duì)一切x∈R恒成立,則不等式x2+ax+b<0的解集為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案