2.如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(-3,0),對(duì)稱軸為x=-1.給出下面四個(gè)結(jié)論:
①b2>4ac; 
②2a-b=1; 
③a-b+c=0; 
④5a<b.
其中正確的是(  )
A.②④B.①④C.②③D.①③

分析 ①由圖象與x軸有交點(diǎn),對(duì)稱軸為x=-$\frac{2a}$=-1,與y軸的交點(diǎn)在y軸的正半軸上,可以推出b2-4ac>0,可對(duì)①進(jìn)行判斷;
②由拋物線的開口向下知a<0,與y軸的交點(diǎn)在y軸的正半軸上得到c>0,由對(duì)稱軸為x=-$\frac{2a}$=-1,可以②進(jìn)行分析判斷;
③由x=1時(shí),由圖象可知y≠0,可對(duì)③進(jìn)行分析判斷;
④代值計(jì)算即可對(duì)④進(jìn)行判斷.

解答 解:①∵圖象與x軸有交點(diǎn),對(duì)稱軸為x=-$\frac{2a}$=-1,與y軸的交點(diǎn)在y軸的正半軸上,
又∵二次函數(shù)的圖象是拋物線,
∴與x軸有兩個(gè)交點(diǎn),
∴b2-4ac>0,即b2>4ac,故①正確;
②∵拋物線的開口向下,
∴a<0,
∵與y軸的交點(diǎn)在y軸的正半軸上,
∴c>0,
∵對(duì)稱軸為x=-$\frac{2a}$=-1,
∴2a=b,
故②錯(cuò)誤;
③∵x=1時(shí),
由圖象可知y≠0,故③錯(cuò)誤;
④∵把x=1,x=3代入解析式可得a+b+c=0,9a-3b+c=0,整理可得5a-b=-c<0
故④正確;
故選:B

點(diǎn)評(píng) 本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系,解答此類問題的關(guān)鍵是掌握二次函數(shù)y=ax2+bx+c系數(shù)符號(hào)由拋物線開口方向、對(duì)稱軸、拋物線與y軸的交點(diǎn)、拋物線與x軸交點(diǎn)的個(gè)數(shù)確定,解題時(shí)要注意數(shù)形結(jié)合思想的運(yùn)用

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=ln(1+x)-ax(a∈R).
( I)當(dāng)a=0時(shí),過點(diǎn)P(-1,0)作曲線y=f(x)的切線,求切線的方程;
( II)討論函數(shù)f(x)在[0,+∞)的單調(diào)性;
( III)當(dāng)0<y<x<1時(shí),證明:lnx-lny>ln(x-y)+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓W:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),短軸端點(diǎn)到其右焦點(diǎn)F(2,0)的距離為$\sqrt{5}$,O為坐標(biāo)原點(diǎn).
(1)求橢圓W的方程;
(2)設(shè)A,B,C是橢圓W上的三個(gè)點(diǎn),判斷四邊形OABC能否為矩形?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知{an}是等差數(shù)列,且a1+a3+a8+a10=46,則a6+a5=( 。
A.12B.16C.20D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)證明柯西不等式:若a,b,c,d都是實(shí)數(shù),則(a2+b2)(c2+d2)≥(ac+bd)2,并指出此不等式里等號(hào)成立的條件:
(2)用柯西不等式求函數(shù)y=2$\sqrt{x-3}$+4$\sqrt{5-x}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)定義在[-2,2]上的函數(shù)f(x)在區(qū)間[0,2]上單調(diào)遞減,且f(1-m)<f(3m).
(1)若函數(shù)f(x)在區(qū)間[-2,2]上是奇函數(shù),求實(shí)數(shù)m的取值范圍.
(2)若函數(shù)f(x)在區(qū)間[-2,2]上是偶函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)向量$\overrightarrow{\overrightarrow{a}}$=(λ+2,λ2-$\sqrt{3}$cos2a),向量$\overrightarrow$=(m,$\frac{m}{2}$+sinacosa,其中λ,m,α為實(shí)數(shù).若向量$\overrightarrow{a}$=2$\overrightarrow$,則$\frac{λ}{m}$的取值范圍為( 。
A.[-6,1]B.[-3,3]C.[1,7]D.[2,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在一次案件中,公民D謀殺致死.嫌疑犯A、B、C對(duì)簿公堂.嫌疑犯A說:“我沒有去D家,我和C去了B家”;嫌疑犯B說:“C去了A家,也去了D家”;嫌疑犯C說:“我沒去D家”.由此推斷嫌疑最大的是(  )
A.AB.BC.CD.A和C

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知全集U={1,2,3,4,5,6},若A∪B={1,2,3,4,5},A∩B={3,4,5},則∁UA可能是(  )
A.{6}B.{4}C.{3}D.{1,2,5,6}

查看答案和解析>>

同步練習(xí)冊(cè)答案