分析 (1)根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進行轉(zhuǎn)化建立不等式組進行求解即可.
(2)根據(jù)函數(shù)是偶函數(shù)將不等式進行轉(zhuǎn)化求解即可.
解答 解(1)因為函數(shù)f(x)在區(qū)間[-2,2]上是奇函數(shù)且在區(qū)間[0,2]上單調(diào)遞減,
所以函數(shù)f(x)在[-2,2]上單調(diào)遞減,
則$\left\{\begin{array}{l}-2≤1-m≤2\\-2≤3m≤2\\ 1-m>3m\end{array}\right.$,可以得出$-\frac{2}{3}≤m<\frac{1}{4}$.…(6分)
(2)因為函數(shù)f(x)在區(qū)間[-2,2]上是偶函數(shù)且在區(qū)間[0,2]上單調(diào)遞減,
所以函數(shù)f(x)在[-2,0]上單調(diào)遞增,
則$\left\{\begin{array}{l}-2≤1-m≤2\\-2≤3m≤2\\|1-m|>|3m|\end{array}\right.$,
可以得出$-\frac{1}{2}≤m<\frac{1}{4}$.(12分)
點評 本題主要考查不等式的求解,根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進行轉(zhuǎn)化是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-$\frac{2}{3}$] | B. | (-∞,$\frac{1}{3}$] | C. | [$\frac{1}{3}$,+∞) | D. | [-$\frac{1}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ②④ | B. | ①④ | C. | ②③ | D. | ①③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com