已知函數(shù)f(x)=2
3
sinxcosx+cos2x+1(x∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)f(x)在[-
π
4
π
4
]上的最小值,并寫出f(x)取最小值時相應(yīng)的x值.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的單調(diào)性
專題:計算題,三角函數(shù)的求值
分析:(Ⅰ)利用二倍角、輔助角公式化簡函數(shù),結(jié)合正弦函數(shù)的單調(diào)性,即可求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)因?yàn)閤∈[-
π
4
π
4
],所以2x+
π
6
∈[-
π
3
3
],利用三角函數(shù)的性質(zhì),即可求得結(jié)論.
解答: 解:(Ⅰ)f(x)=2
3
sinxcosx+cos2x+1
=
3
sin2x+cos2x+1=2sin(2x+
π
6
)
+1,
2x+
π
6
∈[-
π
2
+2kπ,
π
2
+2kπ]
,可得x∈[-
π
3
+kπ,
π
6
+kπ]
(k∈Z).
∴函數(shù)的單調(diào)遞增區(qū)間為[-
π
3
+kπ,
π
6
+kπ]
(k∈Z).    …(7分)
(Ⅱ)∵x∈[-
π
4
,
π
4
],
∴2x+
π
6
∈[-
π
3
,
3
]…(9分),
-
3
+1≤2sin(2x+
π
6
)+1≤3
,…(11分)
∴當(dāng)2x+
π
6
=-
π
3
,即x=-
π
4
時,函數(shù)f(x)取得最小值-
3
+1
.…(13分)
點(diǎn)評:本題考查三角函數(shù)的化簡,考查三角函數(shù)的性質(zhì),考查學(xué)生的計算能力,正確化簡函數(shù)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,PG⊥平面ABCD,垂足為G,G在AD上且AG=
1
3
GD,BG⊥GC,GB=GC=2,E是BC的中點(diǎn),四面體P-BCG的體積為
8
3

(1)求二面角P-BC-D的正切值;
(2)求直線DP到平面PBG所成角的正弦值;
(3)在棱PC上是否存在一點(diǎn)F,使異面直線DF與GC所成的角為60°,若存在,確定點(diǎn)F的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高校在2013年的自主招生考試成績中隨機(jī)抽取40名學(xué)生的筆試成績,按成績共分成五組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100],得到的頻率分布直方圖如圖所示,同時規(guī)定成績在85分以上的學(xué)生為“優(yōu)秀”,成績小于85分的學(xué)生為“良好”,且只有成績?yōu)椤皟?yōu)秀”的學(xué)生才能獲得面試資格.
(Ⅰ)求出第4組的頻率,并補(bǔ)全頻率分布直方圖;
(Ⅱ)根據(jù)樣本頻率分布直方圖估計樣本的眾數(shù),中位數(shù)和平均數(shù);
(Ⅲ)如果用分層抽樣的方法從“優(yōu)秀”和“良好”的學(xué)生中共選出5人,再從這5人中選2人,那么至少有一人是“優(yōu)秀”的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知平行六面體ABCD-A1B1C1D1的底面為正方形,O1、O分別為上、下底面的中心,且A1在底面ABCD上的射影是O.
(1)求證:平面O1DC⊥平面ABCD;
(2)若∠A1AB=60°,求平面BAA1與平面CAA1的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三棱柱ABC-A′B′C′中,D是BC的中點(diǎn),AA′=AB=2
(1)求證:A′C∥平面AB′D;
(2)求二面角D一AB′一B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科做)如圖,四棱錐P-ABCD的底面ABCD是直角梯形,∠ABC=90°,BC∥AD,且AB=AD=2BC,頂點(diǎn)P在底面ABCD內(nèi)的射影恰好落在AB的中點(diǎn)O上.
(1)求證:PD⊥AC;
(2)若PO=AB,求直線PD與AB所成角的余弦值;
(3)若平面APB與平面PCD所成的二面角為45°,求
PO
BC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖①,在平面內(nèi),ABCD是∠BAD=60°且AB=a的菱形,ADMA1和CDNC1都是正方形. 將兩個正方形分別沿AD,CD折起,使M與N重合于點(diǎn)D1.設(shè)直線l過點(diǎn)B且垂直于菱形ABCD所在的平面,點(diǎn)E是直線l上的一個動點(diǎn),且與點(diǎn)D1位于平面ABCD同側(cè)(圖②).
(1)求證:不管點(diǎn)E如何運(yùn)動都有CE∥面ADD1
(2)當(dāng)線段BE=
3
2
a時,求二面角E-AC-D1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+ax+21
x+1
 (a∈R)
,若對于任意的x∈N+,f(x)≥3恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,E是棱CC1的中點(diǎn),F(xiàn)是側(cè)面BCC1B1內(nèi)的動點(diǎn),且A1F∥平面D1AE,則A1F與平面BCC1B1所成角的正切值的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案