【題目】如圖,平面ABCD⊥平面CDEF,且四邊形ABCD是梯形,四邊形CDEF是矩形,∠BAD=∠CDA=90°,AB=AD=DE=CD,M是線段DE上的動點.
(1)試確定點M的位置,使BE∥平面MAC,并說明理由;
(2)在(1)的條件下,四面體E-MAC的體積為3,求線段AB的長.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點務(wù)極點,軸正半軸為極軸建立極坐標(biāo)系,曲線,
(1)求曲線,的直角坐標(biāo)方程;
(2)曲線和的交點為,,求以為直徑的圓與軸的交點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底,,為常數(shù)且)
(1)當(dāng)時,討論函數(shù)在區(qū)間上的單調(diào)性;
(2)當(dāng)時,若對任意的,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確命題的個數(shù)是( 。
①若2b=a+c,則a,b,c成等差數(shù)列;
②“a,b,c成等比數(shù)列”的充要條件是“b2=ac”;
③若數(shù)列{an2}是等比數(shù)列,則數(shù)列{an}也是等比數(shù)列;
④若,則
A.3B.2C.1D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是平面內(nèi)互不平行的三個向量,,有下列命題:①方程不可能有兩個不同的實數(shù)解;②方程有實數(shù)解的充要條件是;③方程有唯一的實數(shù)解;④方程沒有實數(shù)解,其中真命題有_______________.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量與向量的對應(yīng)關(guān)系用表示.
(1) 證明:對于任意向量、及常數(shù)m、n,恒有;
(2) 證明:對于任意向量,;
(3) 證明:對于任意向量、,若,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在矩形中,,點為線段中點,如圖3所示,將沿著翻折至(點不在平面內(nèi)),記線段中點為,若三棱錐體積的最大值為,則線段長度的最大值為___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心為,點是圓上的動點,點,線段的垂直平分線交于點.
(1)求點的軌跡的方程;
(2)過點作斜率不為0的直線與(1)中的軌跡交于,兩點,點關(guān)于軸的對稱點為,連接交軸于點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠擬制造一個如圖所示的容積為36π立方米的有蓋圓錐形容器.
(1)若該容器的底面半徑為6米,求該容器的表面積;
(2)當(dāng)容器的高為多少米時,制造該容器的側(cè)面用料最。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com