14.已知圓O的半徑為定長r,點A是平面內(nèi)一定點(不與O重合),P是圓O上任意一點,線段AP的垂直平分線l和直線OP相交于點Q,當點P在圓上運動時,點Q的軌跡可能是下列幾種:①橢圓,②雙曲線,③拋物線,④直線,⑤點( 。
A.①②⑤B.①②③C.①④⑤D.②③④

分析 對A的位置進行討論,利用中垂線的性質(zhì)即可得出QO和QP的關(guān)系,根據(jù)圓錐曲線的定義得出結(jié)論.

解答 解:∵線段AP的垂直平分線l和直線OP相交于點Q,
∴QA=QP,
(1)若A在圓外,則|QO-OP|=OP,即|QO-QA|=r<OA,
此時Q點軌跡為雙曲線;
(2)若A在圓內(nèi),則|QA+QO|=|QP+QO|=r>OA,
此時Q點軌跡為橢圓;
(3)若A在圓上,則AP的中垂線經(jīng)過圓心O,過Q點軌跡為圓心O,
故選A.

點評 本題考查了圓錐曲線的定義,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知△ABC中,若sin2A+sin2B<sin2C,則這個三角形一定是( 。
A.銳角三角形B.鈍角三角形C.直角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某次數(shù)學考試試題中共有10道選擇題,每道選擇題都有4個選項,其中僅有一個是正確的.評分標準規(guī)定:“每題只選1項,答對得5分,不答或答錯得0分.”某考生每道題都給了一個答案,已確定有6道題的答案是正確的,而其余題中,有兩道題都可判斷出兩個選項是錯誤的有一道題可以判斷一個選項是錯誤的,還有一道題因不理解題意只能亂猜,試求出該考生:
(Ⅰ)得45分的概率;
(Ⅱ)所得分數(shù)ξ的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.滿足A=60°,a=2$\sqrt{3}$,b=4的△ABC的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.2011年,國際數(shù)學協(xié)會正式宣布,將每年的3月14日設(shè)為國際數(shù)學節(jié),來源則是中國古代數(shù)學家祖沖之的圓周率.祖沖之,在世界數(shù)學史上第一次將圓周率(π)值計算到小數(shù)點后的第7位,即3.1415926到3.1415927之間,數(shù)列{an}是公差大于0的等差數(shù)列,其前三項是“31415926”中連續(xù)的三個數(shù),數(shù)列{bn}是等比數(shù)列,其公比大于1的正整數(shù)且前三項是“31415926”中的三個數(shù),且a3=b3
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)cn=$\left\{\begin{array}{l}{\frac{32}{({a}_{n}+3)•({a}_{n+2}+3)},n=2k-1(k∈N*)}\\{lo{g}_{3}_{n+1},n=2k(k∈N*)}\end{array}\right.$,求c1+c2+c3+…+c${\;}_{{2}^{n}}$.(n∈N*)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,向量$m=(\frac{1}{2}cosA,\frac{1}{2}cosC)$,n=(c,a),且m∥n,則△ABC為等腰或直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知實數(shù)x,y滿足$\left\{\begin{array}{l}3x-2y-3≤0\\ x-3y+6≥0\\ 2x+y-2≥0\end{array}\right.$,在這兩個實數(shù)x,y之間插入三個實數(shù),使這五個數(shù)構(gòu)成等差數(shù)列,那么這個等差數(shù)列最后三項和的最大值為( 。
A.11B.10C.9D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖的程序框圖的算法思路源于數(shù)學名著《幾何原本》中的“輾轉(zhuǎn)相除法”,執(zhí)行該程序框圖(圖中“aMODb”表示a除以b的余數(shù)),若輸入的a,b分別為485,270,則輸出的b=(  )
A.0B.10C.5D.55

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)$f(x)=sin\frac{πx}{6}$,集合M={0,1,2,3,4,5,6,7,8},現(xiàn)從M中任取兩個不同元素m,n,則f(m)f(n)=0的概率為( 。
A.$\frac{5}{12}$B.$\frac{7}{12}$C.$\frac{7}{18}$D.$\frac{7}{9}$

查看答案和解析>>

同步練習冊答案