13.在△ABC中,角A,B,C所對(duì)的邊分別是$a,b,c,\frac{asinA+bsinB-csinC}{sinBsinC}=\frac{{2\sqrt{3}}}{3}a$.
(1)求角C;
(2)若△ABC的中線(xiàn)CD的長(zhǎng)為1,求△ABC的面積的最大值.

分析 (1)根據(jù)正弦定理化簡(jiǎn),結(jié)合余弦定理,可得角C大。
(2)三角形中線(xiàn)長(zhǎng)定理,余弦定理化簡(jiǎn)后,結(jié)合基本不等式可得ab的最大值,即可求△ABC的面積的最大值.

解答 解:(1)∵$\frac{asinA+bsinB-csinC}{sinBsinC}=\frac{{2\sqrt{3}}}{3}a$,
由正弦定理化簡(jiǎn):$\frac{{a}^{2}+^{2}-{c}^{2}}{bsinC}=\frac{2\sqrt{3}}{3}a$
由余弦定理得:$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=\frac{{\sqrt{3}}}{3}sinC$,
即$tanC=\sqrt{3}$,
∵0<C<π.
∴$C=\frac{π}{3}$.
(2)由三角形中線(xiàn)長(zhǎng)定理得:2(a2+b2)=22+c2=4+c2,
由三角形余弦定理得:c2=a2+b2-ab,
消去c2得:$4-ab={a^2}+{b^2}≥2ab,ab≤\frac{4}{3}$(當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立),
即${S_{△ABC}}=\frac{1}{2}absinC≤\frac{1}{2}×\frac{4}{3}×\frac{{\sqrt{3}}}{2}=\frac{{\sqrt{3}}}{3}$.

點(diǎn)評(píng) 本題考查了正弦定理、余弦定理、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知命題α:如果x<3,那么x<5,命題β:如果x≥3,那么x≥5,則命題α是命題β的( 。
A.否命題B.逆命題C.逆否命題D.否定形式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,Q為BB1的中點(diǎn),過(guò)A1,Q,D三點(diǎn)的平面記為α.
(Ⅰ)證明:平面α與平面A1B1C1D1的交線(xiàn)平行于直線(xiàn)CD;
(Ⅱ)若AA1=3,BC=CD=$\sqrt{3}$,∠BCD=120°,求平面α與底面ABCD所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.仿照我國(guó)南宋數(shù)學(xué)楊輝所著的《詳解九章算術(shù)》一書(shū)中的“楊輝三角形”,得到如下數(shù)表:

該數(shù)表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于“肩上”兩數(shù)之和,表中最后一行僅有一個(gè)數(shù),則這個(gè)數(shù)為2017×22014

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下面四個(gè)命題中,真命題是( 。
①?gòu)膭蛩賯鬟f的產(chǎn)品生產(chǎn)流水線(xiàn)上,質(zhì)檢員每30分鐘從生產(chǎn)流水線(xiàn)中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣方法是系統(tǒng)抽樣;
②兩個(gè)變量的線(xiàn)性相關(guān)程度越強(qiáng),則相關(guān)系數(shù)的值越接近于1;
③兩個(gè)分類(lèi)變量X與Y的觀(guān)測(cè)值κ2,若κ2越小,則說(shuō)明“X與Y有關(guān)系”的把握程度越大;
④隨機(jī)變量X~N(0,1),則P(|X|<1)=2P(X<1)-1.
A.①④B.②④C.①③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知數(shù)列{an}的奇數(shù)項(xiàng)成等差數(shù)列,偶數(shù)項(xiàng)成等比數(shù)列,且公差和公比都是2,若對(duì)滿(mǎn)足m+n≤5的任意正整數(shù)m,n,均有am+an=am+n成立.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令${b_n}=\frac{{{a_{2n-1}}}}{{{a_{2n}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.現(xiàn)有4張卡片,正面分別標(biāo)有1,2,3,4,背面完全相同.將卡片洗勻,背面向上放置,甲、乙二人輪流抽取卡片,每人每次抽取一張,抽取后不放回,甲先抽.若二人約定,先抽到標(biāo)有偶數(shù)的卡片者獲勝,則甲獲勝的概率是( 。
A.$\frac{5}{12}$B.$\frac{1}{2}$C.$\frac{7}{12}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)F1,F(xiàn)2分別是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),過(guò)點(diǎn)F1的直線(xiàn)交橢圓E于A,B兩點(diǎn),|AF1|=3|BF1|,若cos∠AF2B=$\frac{3}{5}$,則橢圓E的離心率為( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知圓C:x2+y2=25,過(guò)點(diǎn)M(-2,3)作直線(xiàn)l交圓C于A,B兩點(diǎn),分別過(guò)A,B兩點(diǎn)作圓的切線(xiàn),當(dāng)兩條切線(xiàn)相交于點(diǎn)N時(shí),則點(diǎn)N的軌跡方程為2x-3y-25=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案