3.已知命題α:如果x<3,那么x<5,命題β:如果x≥3,那么x≥5,則命題α是命題β的( 。
A.否命題B.逆命題C.逆否命題D.否定形式

分析 根據(jù)命題“若p,則q”的否命題是“若¬p,則¬q”,即可得出結(jié)論.

解答 解:命題α:如果x<3,那么x<5,
命題β:如果x≥3,那么x≥5,
則命題α是命題β的否命題.
故選:A.

點評 本題考查了四種命題之間的關(guān)系與應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)$f(x)=|{x+a+1}|+|{x-\frac{4}{a}}|,(a>0)$.
(Ⅰ)證明:f(x)≥5;
(Ⅱ)若f(1)<6成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.拋物線$x=\frac{1}{4}{y^2}$的焦點到雙曲線${x^2}-\frac{y^2}{3}=1$的漸近線的距離是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.將函數(shù)f(x)=2cos2x的圖象向右平移$\frac{π}{6}$個單位得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間$[0,\frac{a}{3}]$和$[2a,\frac{7π}{6}]$上均單調(diào)遞增,則實數(shù)a的取值范圍是[$\frac{π}{3}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖1,在直角梯形ABCD中,AB∥DC,∠BAD=90°,AB=AD=$\frac{1}{2}CD$=1,如圖2,將△ABD沿BD折起來,使平面ABD⊥平面BCD,設(shè)E為AD的中點,F(xiàn)為AC上一點,O為BD的中點.
(Ⅰ)求證:AO⊥平面BCD;
(Ⅱ)若AF=2FC,求三棱錐A-BEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.復(fù)數(shù)${(1-i)^2}+\frac{2}{1-i}$的共軛復(fù)數(shù)是(  )
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)點M是x軸上的一個定點,其橫坐標(biāo)為a(a∈R),已知當(dāng)a=1時,動圓N過點M且與直線x=-1相切,記動圓N的圓心N的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)當(dāng)a>2時,若直線l與曲線C相切于點P(x0,y0)(y0>0),且l與以定點M為圓心的動圓M也相切,當(dāng)動圓M的面積最小時,證明:M、P兩點的橫坐標(biāo)之差為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)U=R,A={-3,-2,-1,0,1,2},B={x|x≥1},則A∩(∁UB)=( 。
A.{1,2}B.{-1,0,1,2}C.{-3,-2,-1,0}D.{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,角A,B,C所對的邊分別是$a,b,c,\frac{asinA+bsinB-csinC}{sinBsinC}=\frac{{2\sqrt{3}}}{3}a$.
(1)求角C;
(2)若△ABC的中線CD的長為1,求△ABC的面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案