16.計(jì)算:
(1)(1-3i)-(2+5i)+(-4+9i);
(2)(1+2i)÷(3-4i)
(3)(1+2i)(3-4i)

分析 (1)(2)(3)利用復(fù)數(shù)的運(yùn)算法則即可得出.

解答 解:(1)原式=(1-2-4)+(-3-5+9)i=-5+i.
(2)原式=$\frac{(1+2i)(3+4i)}{(3-4i)(3+4i)}$=$\frac{-5+10i}{25}$=-$\frac{1}{5}$+$\frac{2}{5}$i.
(3)原式=3+8+(6-4)i=11+2i.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在[0,2π]上與-$\frac{π}{7}$終邊相同的角是( 。
A.$\frac{π}{7}$B.$\frac{6π}{7}$C.$\frac{8π}{7}$D.$\frac{13π}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若點(diǎn)(x,y)在圓$\left\{\begin{array}{l}{x=3+2cosθ}\\{y=-4+2sinθ}\end{array}\right.$(θ為參數(shù))上,則x2+y2的最小值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.二次函數(shù)f(x)=7x2-(m+13)x-m-2(m∈R)的兩個(gè)零點(diǎn)分別分布在區(qū)間(0,1)和(1,2)內(nèi),則實(shí)數(shù)m的取值范圍為(-4,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知集合A={x|1≤x≤2},B={x|m≤x≤m+3}.
(1)當(dāng)m=2時(shí),求A∪B;
(2)若A⊆B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知拋物線$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(t為參數(shù)),過其焦點(diǎn)F的直線l與拋物線分別交于A、B兩點(diǎn)(A在第一象限內(nèi)),|AF|=3|FB|,過AB的中點(diǎn)且垂于l的直線與x軸交于點(diǎn)G,則△ABG的面積為$\frac{32\sqrt{3}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,內(nèi)角A,B,C滿足$2\sqrt{3}sinAsinB=5sinC$且$cosB=\frac{11}{14}$.
(1)求角A的大。
(2)若內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a=14,求邊BC上的中線AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱錐E-ABCD中,四邊形ABCD為矩形,BC⊥EB,EA⊥EB,M,N分別為AE,CD的中點(diǎn),求證:
(1)直線MN∥平面EBC;
(2)直線EA⊥平面EBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知曲線$y=\frac{e}{x}$上一點(diǎn)P(1,e)處的切線分別交x軸、y軸于A,B兩點(diǎn),O為原點(diǎn),則△OAB的面積為( 。
A.2eB.eC.e2D.2e2

查看答案和解析>>

同步練習(xí)冊(cè)答案