分析 由cos α=$\frac{3}{5}$(0<α<$\frac{π}{2}$),得sinα=$\frac{4}{5}$,則f(α+$\frac{π}{12}$)=sin(α+$\frac{π}{4}$)=sinαcos$\frac{π}{4}$+cosαsin$\frac{π}{4}$即可
解答 解:∵cos α=$\frac{3}{5}$(0<α<$\frac{π}{2}$),∴sinα=$\frac{4}{5}$
f(α+$\frac{π}{12}$)=sin(α+$\frac{π}{4}$)=sinαcos$\frac{π}{4}$+cosαsin$\frac{π}{4}$=$\frac{4}{5}×\frac{\sqrt{2}}{2}+\frac{3}{5}×\frac{\sqrt{2}}{2}=\frac{7\sqrt{2}}{10}$
故答案為:$\frac{7\sqrt{2}}{10}$
點(diǎn)評(píng) 本題考查了三角函數(shù)的求值,考查了三角公式的應(yīng)用,屬于中檔題,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年重慶市高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:填空題
我們知道平方運(yùn)算和開(kāi)方運(yùn)算是互逆運(yùn)算,如:,那么,那么如何將雙重二次根式化簡(jiǎn)呢?如能找到兩個(gè)數(shù),使得即,且使即,那么,雙重二次根式得以化簡(jiǎn);例如化簡(jiǎn):; 且,由此對(duì)于任意一個(gè)二次根式只要可以將其化成的形式,且能找到使得,且,那么這個(gè)雙重二次根式一定可以化簡(jiǎn)為一個(gè)二次根式.請(qǐng)同學(xué)們通過(guò)閱讀上述材料,完成下列問(wèn)題:
(1)填空: _________________; __________________;
(2)化簡(jiǎn):① ②(每題2分)
(3)計(jì)算:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 f(1)<f(2) | B. | 2 f(1)>f(2) | C. | 2 f(1)=f(2) | D. | f(1)=f(2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-5)∪(1,+∞) | B. | (1,19) | C. | [1,19) | D. | (19,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | -1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x,y∈R,若x+y≠0,則x≠1且y≠-1 | |
B. | 命題“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0” | |
C. | a∈R,“$\frac{1}{a}$<1”是“a>1”的必要不充分條件 | |
D. | “若am2<bm2,則a<b”的逆命題為真命題 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com