12.在正三棱錐P-ABC中,M是PC的中點(diǎn),且AM⊥PB,AB=2$\sqrt{2}$,則正三棱錐P-ABC的外接球的表面積為12π.

分析 根據(jù)三棱錐為正三棱錐,可證明出AC⊥PB,結(jié)合PB⊥AM,得到PB⊥平面PAC,因此可得PA、PB、PC三條側(cè)棱兩兩互相垂直.最后利用公式求出外接圓的直徑,結(jié)合球的表面積公式,可得正三棱錐P-ABC的外接球的表面積.

解答 解:取AC中點(diǎn)N,連接BN、PN
∵N為AC中點(diǎn),PA=PC
∴AC⊥PN,同理AC⊥BN,
∵PN∩BN=N
∴AC⊥平面PBN
∵PB?平面PBN
∴AC⊥PB
∵PB⊥AM且AC∩AM=A
∴PB⊥平面PAC⇒PB⊥PA且PB⊥AC
∵三棱錐P-ABC是正三棱錐
∴PA、PB、PC三條側(cè)棱兩兩互相垂直.
∵底面邊長(zhǎng)AB=2$\sqrt{2}$,
∴側(cè)棱PA=2,
∴正三棱錐P-ABC的外接球的直徑為:2R=2$\sqrt{3}$
外接球的半徑為R=$\sqrt{3}$
∴正三棱錐P-ABC的外接球的表面積是S=4πR2=12π
故答案為:12π.

點(diǎn)評(píng) 本題以正三棱錐中的垂直關(guān)系為例,考查了空間線面垂直的判定與性質(zhì),以及球內(nèi)接多面體等知識(shí)點(diǎn),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如果sin(π+A)=$\frac{1}{2}$,那么cos($\frac{3π}{2}$-A)等于( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{bx}{a{x}^{2}+c}$,f′(0)=9,其中a>0,b,c∈R,且b+c=10.
(1)求b,c的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)若在區(qū)間[1,2]上僅存在一個(gè)x0,使得f(x0)≥a,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖,AE是圓O的切線,A是切點(diǎn),AD與OE垂直,垂足是D,割線EC交圓O于B,C,且∠ODC=α,∠DBC=β,則∠OEC=β-α(用α,β表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.雙曲線${x^2}-\frac{y^2}{3}=1$的實(shí)軸長(zhǎng)是2,漸近線方程是y=$±\sqrt{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.給出如下四對(duì)事件:其中屬于互斥事件的有( 。
①某人射擊一次,“射中7環(huán)”與“射中8環(huán)”;
②甲、乙兩人各射擊一次,“甲射中7環(huán)”與“乙射中8環(huán)”;
③甲、乙兩人各射擊一次,“兩人均射中目標(biāo)”與“兩人均沒(méi)有射中目標(biāo)”;
④甲、乙兩人各射擊一次,“至少有一人射中目標(biāo)”與“至多有一人射中目標(biāo)”.
A.1對(duì)B.2對(duì)C.3對(duì)D.4對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,PT切⊙O于點(diǎn)T,PA交⊙O于A,B兩點(diǎn),且與直徑CT交于點(diǎn)D,CD=3,AD=4,BD=6,則PB=( 。
A.6B.8C.10D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=x2-2.
(1)已知函數(shù)g(x)=f(x)+2(x+1)+alnx在區(qū)間(0,1)上單調(diào),求實(shí)數(shù)a的取值范圍;
(2)函數(shù)$h(x)=ln(1+{x^2})-\frac{1}{2}f(x)-k$有幾個(gè)零點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(1)用數(shù)學(xué)歸納法證明:12+22+32+…+n2=$\frac{n(n+1)(2n+1)}{6}$,n是正整數(shù);
(2)用數(shù)學(xué)歸納法證明不等式:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$<2$\sqrt{n}$(n∈N*

查看答案和解析>>

同步練習(xí)冊(cè)答案