分析 由題意可得$\overrightarrow{a}•\overrightarrow$<0,且$\overrightarrow{a}$、$\overrightarrow$不共線,即$\left\{\begin{array}{l}{2×6+3t<0}\\{\frac{6}{2}≠\frac{t}{3}}\end{array}\right.$,由此求得實數(shù)t的取值范圍.
解答 解:若$\overrightarrow{a}$與$\overrightarrow$夾角為鈍角,向量$\overrightarrow{a}$=(2,3),向量$\overrightarrow$=(6,t),
則$\overrightarrow{a}•\overrightarrow$<0,且$\overrightarrow{a}$、$\overrightarrow$不共線,∴$\left\{\begin{array}{l}{2×6+3t<0}\\{\frac{6}{2}≠\frac{t}{3}}\end{array}\right.$,求得t<-4,
故答案為:(-∞,-4).
點評 本題主要考查兩個向量的數(shù)量公式,兩個向量共線的性質(zhì),屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({\frac{1}{2},\frac{1}{4}})$ | B. | $({\frac{1}{4},\frac{1}{2}})$ | C. | $({\frac{{\sqrt{3}}}{4},0})$ | D. | $({0,\frac{{\sqrt{3}}}{4}})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{7}{8}$ | C. | $\frac{1}{8}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2015-2016學年江西省南昌市高二文下學期期末考試數(shù)學試卷(解析版) 題型:解答題
給定函數(shù),若對于定義域中的任意,都有恒成立,則稱函數(shù)為“爬坡函數(shù)”.
(1)證明:函數(shù)是爬坡函數(shù);
(2)若函數(shù)是爬坡函數(shù),求實數(shù)m的取值范圍;
(3)若對任意的實數(shù)b,函數(shù)都不是爬坡函數(shù),求實數(shù)c的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com