11.已知奇函數(shù)f(x)的定義域為R,直線x=1是曲線y=f(x)的對稱軸,且f(3)=1,則f(7)+f(8)=1.

分析 由已知中f(x-1)為奇函數(shù),可得f(-1)=0,結合函數(shù)f(x)的定義域為R,周期為4,且f(1)=1,則f(7)+f(9)=f(-1)+f(1),進而得到答案.

解答 解:由f(x)為奇函數(shù),
知f(0)=0,又∵函數(shù)f(x)的定義域為R,直線x=1是曲線y=f(x)的對稱軸,周期為4,且f(3)=1
∴f(7)+f(8)=f(3)+f(0)=1,
故答案為:1

點評 本題考查的知識點是函數(shù)的奇偶性和函數(shù)的周期性,是函數(shù)圖象和性質(zhì)的綜合應用,難度不大,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知cosθ=$\frac{1}{3}$tan(-$\frac{π}{4}$),則sin($\frac{π}{2}$-θ)等于( 。
A.$\frac{{\sqrt{2}}}{3}$B.-$\frac{1}{3}$C.$\frac{1}{3}$D.$±\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知隨機變量X~B(10,0.6),則E(X)與D(X)分別為(  )
A.2.4   4B.6    2.4C.4    2.4D.6    4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)f(x)=sin4ωx-cos4ωx(ω>0)的最小正周期是π,則ω=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.說出下列算法的結果.
Read a,b,c
If a2+b2=c2 then
Print“是直角三角形!”
Else
Print“非直角三角形!”
End if
運行時輸入3、4、5
運行結果為輸出:直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(1)已知f(x-2)=3x-5,求f(x);
(2)已知二次函數(shù)f(x)的圖象過點(0,4),對任意x滿足f(3-x)=f(x),且有最小值$\frac{7}{4}$,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若集合M={{x|$\frac{2x-1}{x+2}$≤0}},N={x|$\frac{2x-1}{x+1}$≥0},則M∩N=M∩N=(-2,-1)∪{$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列命題中,真命題是( 。
A.?x0∈[0,$\frac{π}{2}$],sinx0+cosx0≥2B.?x∈(3,+∞),x2>2x+1
C.?x0∈R,x02+x0=-1D.?x∈R,tanx≥sinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知向量$\vec a=({sinx,-1})$,$\vec b=({\sqrt{3}cosx,-\frac{1}{2}})$,函數(shù)$f(x)=({\vec a+\vec b})•\vec a-2$.
(1)求函數(shù)f(x)在$[{0,\frac{2π}{3}})$上的最值;
(2)若a,b,c分別為△ABC的內(nèi)角A,B,C的對邊,其中A為銳角,$a=2\sqrt{3}$,c=4,且f(A)=1,求△ABC的面積S.

查看答案和解析>>

同步練習冊答案