19.在區(qū)間[-4,4]上隨機(jī)地取一個數(shù)a,則事件“對任意的正實(shí)數(shù)x,使x2-ax+1≥0成立”發(fā)生的概率為(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

分析 由題意知△=a2-4≤0求出a的范圍,再判斷出所求的事件符合幾何概型,再由幾何概型的概率公式求出所求事件的概率

解答 解:對任意的正實(shí)數(shù)x,使x2-ax+1≥0成立,則△=a2-4≤0,
解得-2≤a≤2;
在區(qū)間[-4,4]上隨機(jī)地取一個數(shù)a,則事件“對任意的正實(shí)數(shù)x,使x2-ax+1≥0成立”符合幾何概型,
∴P(A)=$\frac{2+2}{4+4}$=$\frac{1}{2}$.
故選:B

點(diǎn)評 本題考查了求幾何概型下的隨機(jī)事件的概率,即求出所有實(shí)驗(yàn)結(jié)果構(gòu)成區(qū)域的長度和所求事件構(gòu)成區(qū)域的長度,再求比值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知數(shù)列{an}前n項(xiàng)和為${S_n}={n^2}-2n+a$,若該數(shù)列是等差數(shù)列,則a=( 。
A.-1B.0C.1D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.原命題:“設(shè)a,b,c∈R,若a>b,則ac2>bc2”,在原命題以及它的逆命題、否命題、逆否命題中,真命題的個數(shù)為(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某校高一年級有甲、乙、丙三位學(xué)生,他們第一次、第二次、第三次月考的物理成績?nèi)绫恚?br />
 第一次月考物理成績第二次月考物理成績第三次月考物理成績
學(xué)生甲 80 85 90
學(xué)生乙 81 83 85
學(xué)生丙 90 86 82
則下列結(jié)論正確的是( 。
A.甲、乙、丙第三次月考物理成績的平均數(shù)為86
B.在這三次月考物理成績中,甲的成績平均分最高
C.在這三次月考物理成績中,乙的成績最穩(wěn)定
D.在這三次月考物理成績中,丙的成績方差最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.甲、乙兩個同學(xué)下棋,若甲獲勝的概率0.3,甲、乙下成和棋的概率為0.4,則乙贏的概率為0.3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρcos(θ+$\frac{π}{3}$)=1.以極點(diǎn)O為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=rcosθ}\\{y=rsinθ}\end{array}\right.$(θ為參數(shù)).若直線l與圓C相切,求r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,a:b:c=2:4:3,則△ABC中最大角的余弦值是$-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=cos(ωx+φ)(ω>0,-π≤φ≤0)為奇函數(shù),且在[-$\frac{π}{4}$,$\frac{3π}{16}$]上單調(diào),則ω的取值范圍是(0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),且P(ξ<2)=0.8,則P(0<ξ<1)的值為0.3.

查看答案和解析>>

同步練習(xí)冊答案