5.已知四棱錐P-ABCD,其三視圖和直觀圖如圖所示,E為BC中點.
(Ⅰ)求此幾何體的體積;
(Ⅱ)求證:平面PAE⊥平面PDE.

分析 (Ⅰ)由三視圖可知底面ABCD為矩形,AB=2,BC=4,定點P在面ABCD內(nèi)的射影為BC的中點E,棱錐的高為2,由此能求出此幾何體的體積.
(Ⅱ)推導出PE⊥AE,AE⊥ED,從而AE⊥平面PED,由此能證明平面PAE⊥平面PDE.

解答 解:(Ⅰ)由三視圖可知底面ABCD為矩形,AB=2,BC=4,
定點P在面ABCD內(nèi)的射影為BC的中點E,棱錐的高為2,
∴此幾何體的體積${V_{P-ABCD}}=\frac{1}{3}{S_{矩形ABCD}}×PE=\frac{1}{3}×2×4×2=\frac{16}{3}$.…(4分)
證明:(Ⅱ)∵PE⊥平面ABCD,AE?平面ABCD,∴PE⊥AE,
取AD中點F,∵AB=CE=BE=2,∴$EF=\frac{1}{2}AD$,∴AE⊥ED,
∵ED∩AE=E,∴AE⊥平面PED,∵AE?平面PAE,
∴平面PAE⊥平面PDE.…(10分)

點評 本題考查幾何體的體積的求法,考查面面垂直的證明,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.為了研究學生性別與是否喜歡數(shù)學課之間的關(guān)系,得到列聯(lián)表如下:
喜歡數(shù)學不喜歡數(shù)學總計
4080120
40140180
總計80220300
并經(jīng)計算:K2≈4.545
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
請判斷有( 。┌盐照J為性別與喜歡數(shù)學課有關(guān).
A.5%B.99.9%C.99%D.95%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知:函數(shù)f(x)=2$\sqrt{3}{sin^2}$x+sin2x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)把函數(shù)y=f(x)的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移$\frac{π}{3}$個單位,得到函數(shù)y=g(x)的圖象,求$g(\frac{π}{6})$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知等比數(shù)列{an}中,已知a1+a3=5,a2+a4=10.
(1)求數(shù)列{an}通項公式an
(2)求數(shù)列{an}前n項和sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.經(jīng)過兩點(x1,y1),(x2,y2)的直線方程都可以表示為( 。
A.$\frac{x-{x}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{y-{y}_{1}}{{y}_{2}-{y}_{1}}$B.$\frac{x-{x}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{y-{y}_{2}}{{y}_{1}-{y}_{2}}$
C.(y-y1)(x2-x1)=(x-x1)(y2-y1D.y-y1=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.高二數(shù)學期中測試中,為了了解學生的考試情況,從中抽取了n個學生的成績(滿分為100分)進行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量n和頻率分布直方圖中x,y的值;
(2)在選取的樣本中,從成績是80分以上(含80分)的同學中隨機抽取3名參加志愿者活動,所抽取的3名同學中至少有一名成績在[90,100]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設(shè)$a=\sqrt{5}-\sqrt{6},b=\sqrt{6}-\sqrt{7}$,則a,b的大小關(guān)系為a<b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知矩陣$[\begin{array}{l}{1}&{2}\\{2}&{a}\end{array}]$的屬于特征值b的一個特征向量為$[\begin{array}{l}{1}\\{1}\end{array}]$,求實數(shù)a、b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=(x-k)ex
(1)求f(x)的單調(diào)區(qū)間;
(2)當k=3時,求f(x)在區(qū)間[0,3]上的最小值.

查看答案和解析>>

同步練習冊答案