7.季節(jié)性服裝當(dāng)季節(jié)即將來臨時(shí),價(jià)格呈上升趨勢,設(shè)某服裝開始時(shí)定價(jià)為10元,并且每周(7天)漲價(jià)2元,5周后開始保持20元的價(jià)格平穩(wěn)銷售;10周后當(dāng)季節(jié)即將過去時(shí),平均每周削價(jià)2元,直到16周末,該服裝已不再銷售.試建立價(jià)格P與周次t之間的函數(shù)關(guān)系式.

分析 周次為t,對(duì)t進(jìn)行分類研究,根據(jù)題意即可列出價(jià)格P與t之間的函數(shù)關(guān)系式;

解答 解:根據(jù)題意可得,P=$\left\{\begin{array}{l}{10+2t,t∈[0,5]}\\{20,t∈(5,10]}\\{40-2t,t∈(10,16]}\end{array}\right.$.

點(diǎn)評(píng) 解決實(shí)際問題通常有四個(gè)步驟:(1)閱讀理解,認(rèn)真審題;(2)引進(jìn)數(shù)學(xué)符號(hào),建立數(shù)學(xué)模型;(3)利用數(shù)學(xué)的方法,得到數(shù)學(xué)結(jié)果;(4)轉(zhuǎn)譯成具體問題作出解答,其中關(guān)鍵是建立數(shù)學(xué)模型.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.直線4x-3y=0與直線3x+y-1=0夾角的正切值為( 。
A.$\sqrt{3}$B.$\frac{3}{4}$C.$\frac{13}{9}$D.$\frac{5\sqrt{10}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow{a}$,$\overrightarrow$夾角為60°,且|$\overrightarrow{a}$|=1,|2$\overrightarrow{a}$-$\overrightarrow$|=2$\sqrt{3}$,則|2$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.$\sqrt{7}$B.2$\sqrt{7}$C.6$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}是等比數(shù)列,且a1=1,a4=8.
(1)求數(shù)列{an}的通項(xiàng)公式;  
(2)設(shè)${b_n}=a_n^{\;}+n$,求數(shù)列{bn}的前n項(xiàng)的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.平面直角坐標(biāo)系xOy中,已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{1}{2}$,左、右焦點(diǎn)分別是F1,F(xiàn)2,以F1為圓心以3為半徑的圓與以F2為圓心以1為半徑的圓相交,且交點(diǎn)在橢圓C上.
(1)求橢圓C的方程;
(2)過橢圓C上一動(dòng)點(diǎn)P(x0,y0)(y0≠0)的直線l:$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{^{2}}$=1,過F2與x軸垂直的直線記為l1,右準(zhǔn)線記為l2;
①設(shè)直線l與直線l1相交于點(diǎn)M,直線l與直線l2相交于點(diǎn)N,證明$\frac{M{F}_{2}}{N{F}_{2}}$恒為定值,并求此定值.
②若連接F1P并延長與直線l2相交于點(diǎn)Q,橢圓C的右頂點(diǎn)A,設(shè)直線PA的斜率為k1,直線QA的斜率為k2,求k1•k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a2+a4=-154,a7+a9=-114,則當(dāng)Sn取得最小值時(shí)的n為( 。
A.20B.21C.22D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知等比數(shù)列{an}的首項(xiàng)a1、公比q,且${a_3}=\frac{3}{2},{S_3}=\frac{9}{2}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}={log_2}\frac{6}{{{a_{2n+1}}}}$,且{bn}為遞增數(shù)列.若${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)a>b>0,則下列不等式成立的是( 。
A.|b-a|≥1B.2a<2bC.lg$\frac{a}$<0D.0<$\frac{a}$<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=sinx+$\sqrt{3}$cosx(x∈[0,$\frac{π}{2}}$])的單調(diào)遞增區(qū)間是[0,$\frac{π}{6}$],最小值是1.

查看答案和解析>>

同步練習(xí)冊答案