2.在△ABC中,角B為鈍角,則sinB>sin(A+B).(填“>”或“<”或“=”)

分析 由B為鈍角,A為銳角,可得0<sinA<1,cosB<0,0<cosA<1,0<sinB<1,利用兩角和的正弦函數(shù)公式,做差即可計(jì)算得解.

解答 解:∵sin(A+B)=sinAcosB+cosAsinB,
又∵B為鈍角,A為銳角,
∴0<sinA<1,cosB<0,0<cosA<1,0<sinB<1,
∴sinB-sin(A+B)=sinB(1-cosA)-sinAcosB>0,即sinB>sin(A+B),
故答案為:>.

點(diǎn)評(píng) 此題考查了三角函數(shù)值的符號(hào),兩角和的正弦函數(shù)公式,熟練掌握公式及性質(zhì)是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=ex-ax+a(a∈R),其中e為自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)y=f(x)的單調(diào)性;
(2)函數(shù)y=f(x)的圖象與x軸交于A(x1,0),B(x2,0)兩點(diǎn),x1<x2,點(diǎn)C在函數(shù)y=f(x)的圖象上,且△ABC為等腰直角三角形,記$\sqrt{\frac{{{x_2}-1}}{{{x_1}-1}}}=t$,求at-(a+t)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖,由拋物線y2=8x與直線x+y-6=0及x軸所圍成的圖形(圖中陰影部分)的面積為$\frac{40}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知定義在R上的奇函數(shù)y=f(x)的圖象關(guān)于直線x=1對(duì)稱(chēng),當(dāng)-1≤x<0時(shí),f(x)=-log${\;}_{\frac{1}{2}}$(-x),則方程f(x)-$\frac{1}{2}$=0在(0,6)內(nèi)的所有根之和為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)a,b∈(0,+∞),則“a>b”是“l(fā)ogab<1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.由于研究性學(xué)習(xí)的需要,中學(xué)生李華持續(xù)收集了手機(jī)“微信運(yùn)動(dòng)”團(tuán)隊(duì)中特定20名成員每天行走的步數(shù),其中某一天的數(shù)據(jù)記錄如下:
5860  6520  7326  6798  7325
8430  8215  7453  7446  6754
7638  6834  6460  6830  9860
8753  9450  9860  7290  7850
對(duì)這20個(gè)數(shù)據(jù)按組距1000進(jìn)行分組,并統(tǒng)計(jì)整理,繪制了如下尚不完整的統(tǒng)計(jì)圖表:
步數(shù)分組統(tǒng)計(jì)表(設(shè)步數(shù)為x)
組別步數(shù)分組頻數(shù)
A5500≤x<65002
B6500≤x<750010
C7500≤x<8500m
D8500≤x<95002
E9500≤x<10500n
(Ⅰ)寫(xiě)出m,n的值,若該“微信運(yùn)動(dòng)”團(tuán)隊(duì)共有120人,請(qǐng)估計(jì)該團(tuán)隊(duì)中一天行走步數(shù)不少于7500步的人數(shù);
(Ⅱ)記C組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v1,$s_1^2$,E組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v2,$s_2^2$,試分別比較v1與v2,$s_1^2$與$s_2^2$的大小;(只需寫(xiě)出結(jié)論)
(Ⅲ)從上述A,E兩個(gè)組別的步數(shù)數(shù)據(jù)中任取2個(gè)數(shù)據(jù),求這2個(gè)數(shù)據(jù)步數(shù)差的絕對(duì)值大于3000步的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,已知F1、F2是橢圓G:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點(diǎn),直線l:y=k(x+1)經(jīng)過(guò)左焦點(diǎn)F1,且與橢圓G交于A、B兩點(diǎn),△ABF2的周長(zhǎng)為$4\sqrt{3}$.
(Ⅰ)求橢圓G的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在直線l,使得△ABF2為等腰直角三角形?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列函數(shù)中為奇函數(shù)的是( 。
A.y=x2+2xB.y=ln|x|C.y=($\frac{1}{3}$)xD.y=xcosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-\frac{3x+2}{x+1},x∈(-1,0]}\\{x,x∈(0,1]}\end{array}\right.$且g(x)=mx+m,若g(x)=f(x)在(-1,1]內(nèi)有且僅有兩個(gè)不同的根,則實(shí)數(shù)m的取值范圍是( 。
A.(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$]B.(-$\frac{11}{4}$,-2]∪(0,$\frac{1}{2}$]C.(-$\frac{9}{4}$,-2]∪(0,$\frac{2}{3}$]D.(-$\frac{11}{4}$,-2]∪(0,$\frac{2}{3}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案