16.(x2+ax-1)6的展開式中x2的系數(shù)為54,則實(shí)數(shù)a為( 。
A.-2B.-3或3C.-2或2D.-3或-2

分析 將三項(xiàng)分解成二項(xiàng),(x2+ax-1)6=[(ax-1)+x2]6利用通項(xiàng)公式求解展開式中x2的項(xiàng),即可求解其系數(shù).從而可得實(shí)數(shù)a的值.

解答 解:(x2+ax-1)6=[(ax-1)+x2]6
展開式含x2項(xiàng)為$C_6^1{x^2}C_5^5{(-1)^5}+C_6^2{(ax)^2}C_4^4{(-1)^{4}}=(-6+15{a^2}){x^2}=54{x^2}⇒a=±2$,
故選C.

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,將三項(xiàng)分解成二項(xiàng),利用通項(xiàng)公式求解展開式中x2的項(xiàng).屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,橢圓C1=$\frac{x^2}{a^2}+\frac{y^2}{b^2}$1(a>b>0)上任意一點(diǎn)到點(diǎn)P(-1,0)的最小距離為1,且橢圓C的離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)若直線l與橢圓C交于點(diǎn)M、N,且△MON的面積為$\sqrt{3}$,問|OM|2+|ON|2是否為定值?若是,求出該定值,并求出sin∠MON的最小值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.貝已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(x-3,2),且$\overrightarrow{a}⊥\overrightarrow$.
(1)求x的值;
(2)試確定實(shí)數(shù)k的值,使k$\overrightarrow{a}+\overrightarrow$與$\overrightarrow{a}-2\overrightarrow$平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一條光線從點(diǎn)(1,-1)射出,經(jīng)y軸反射后與圓(x-2)2+y2=1相交,則入射光線所在直線的斜率的取值范圍為( 。
A.$[{-\frac{3}{4},0}]$B.$[{0,\frac{3}{4}}]$C.$({-\frac{3}{4},0})$D.$({0,\frac{3}{4}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知x,y∈R,m+n=7,f(x)=|x-1|-|x+1|.
(1)解不等式f(x)≥(m+n)x;
(2)設(shè)max{a,b}=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,求F=max{|x2-4y+m|,|y2-2x+n|}的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax2+x+a,g(x)=ex
(Ⅰ)函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線與2x+y-1=0平行,求實(shí)數(shù)a的值;
(Ⅱ)設(shè)h(x)=$\frac{f(x)}{g(x)}$,當(dāng)x∈[0,2]時,$\frac{f(x)}{g(x)}$≥$\frac{1}{g(2)}$恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$\overrightarrow a,\overrightarrow b$是單位向量,$\overrightarrow a,\overrightarrow b$的夾角為90°,若向量$\overrightarrow c滿足$|$\overrightarrow c-\overrightarrow a-\overrightarrow b|=2$,則$\overrightarrow{|c}$|的最大值為(  )
A.$2-\sqrt{2}$B.$\sqrt{2}$C.2D.$2+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax-lnx+x2
(Ⅰ)若a=-1,求函數(shù)f(x)的極值;
(Ⅱ)若a=1,?x1∈(1,2),?x2∈(1,2),使得f(x1)-x12=mx2-$\frac{1}{3}m{x_2}$3(m≠0),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)$z=\frac{2i}{-1+i}$,則( 。
A.z的實(shí)部為1B.|z|=2
C.z的虛部為1D.z的共軛復(fù)數(shù)為-1-i

查看答案和解析>>

同步練習(xí)冊答案