14.已知等差數(shù)列{an}中,a2=7,a4=15,則前5項的和S5=55.

分析 利用等差數(shù)列的通項公式性質(zhì)及其求和公式即可得出.

解答 解:S5=$\frac{5({a}_{1}+{a}_{5})}{2}$=$\frac{5×({a}_{2}+{a}_{4})}{2}$=$\frac{5×22}{2}$=55.
故答案為:55.

點評 本題考查了等差數(shù)列的通項公式性質(zhì)與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={1,2,3,4,6,7,9},集合B={1,2,4,8,9},則A∩B=( 。
A.{1,2,4,9}B.{2,4,8}C.{1,2,8}D.{1,2,9}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)已知f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α-π)tan(-α+\frac{3}{2}π)}{sin(-α-π)}$.若cos(α-$\frac{3}{2}$π)=$\frac{1}{5}$,α是第三象限角,求f(α);
(2)若α、β為銳角,且cos(α+β)=$\frac{12}{13}$,cos(2α+β)=-$\frac{3}{5}$,求cosα 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)是奇函數(shù)的是( 。
A.y=xB.y=2x2-3C.y=$\sqrt{x}$D.y=x2,x∈[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時,f(x)=$\frac{2x}{x-1}$.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)在[2,6]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知二次函數(shù)y=f(x)的圖象過點(1,6),且當(dāng)x=-1時,函數(shù)有最小值為2,求二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知A(x,2,-1)、B(6,4,1),且|AB|=2$\sqrt{3}$,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.拋物線y2=4ax的準線方程是x=-2,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的前n項和Sn和通項an滿足2Sn+an=1,等差數(shù)列{bn}中,b1=1,b2=2.
(1)求數(shù)列{an},{bn}的通項公式;
(2)數(shù)列{cn}滿足cn=an•bn,求證:c${\;}_{1}+{c}_{2}+{c}_{3}+…+{c}_{n}<\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案